

DESIGN APPROVAL

RICHARDSON HIGHWAY MP 359 RAILROAD GRADE SEPARATED FACILITY

PROJECT NO. Z607340000/0A24033

Requested by:

leen a

04-01-2021

Date

Colleen M. Ackiss, P.E. Engineering Manager Northern Region

Design Approval Granted:

Fox

4/7/2021

Sarah E. Schacher, P.E. Preconstruction Engineer Northern Region Date

Distribution: NR Design Directive 20-01 Distribution

DESIGN STUDY REPORT FOR

RICHARDSON HIGHWAY MP 359 RAILROAD GRADE SEPARATED FACILITY

PROJECT NO. Z607340000/0A24033

PREPARED BY: James McCurtain, P.E.

ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES NORTHERN REGION DESIGN AND ENGINEERING SERVICES MARCH 2021

RICHARDSON HIGHWAY MP 359 RAILROAD GRADE SEPARATED FACILITY PROJECT NO. Z607340000/0A24033

Table of Contents

INTRODUCTION/HISTORY	. 1
PROJECT DESCRIPTION	. 2
DESIGN STANDARDS	
DESIGN EXCEPTIONS AND DESIGN WAIVERS	. 3
DESIGN ALTERNATIVES	. 3
PREFERRED DESIGN ALTERNATIVE	. 4
3R ANALYSIS	. 4
TRAFFIC ANALYSIS	
HORIZONTAL/VERTICAL ALIGNMENT	. 5
TYPICAL SECTION(S)	. 5
PAVEMENT DESIGN	. 6
PRELIMINARY BRIDGE LAYOUT	. 6
RIGHT-OF-WAY REQUIREMENTS	. 6
MAINTENANCE CONSIDERATIONS	
MATERIAL SOURCES	. 7
UTILITY RELOCATION & COORDINATION	
ACCESS CONTROL FEATURES	
PEDESTRIAN/BICYCLE (ADA) PROVISIONS	. 8
SAFETY IMPROVEMENTS	
INTELLIGENT TRANSPORTATION SYSTEM FEATURES	. 8
DRAINAGE	
SOIL CONDITIONS	. 9
EROSION AND SEDIMENT CONTROL	10
ENVIRONMENTAL COMMITMENTS	
WORK ZONE TRAFFIC CONTROL	
VALUE ENGINEERING	11
COST ESTIMATE	11

LOCATION MAP	Figure 1
PROJECT LIMITS	
TYPICAL SECTION	
TYPICAL SECTION	

DESIGN CRITERIA AND DESIGN DESIGNATION	Appendix A
ENVIRONMENTAL DOCUMENT	Appendix B
TRAFFIC ANALYSES AND SPEED STUDIES	
PAVEMENT DESIGN	
PRELIMINARY PLAN AND PROFILE SHEETS	
PRELIMINARY BRIDGE PLANS	
UTILITY CONFLICT LIST AND CROSS SECTIONS	Appendix G

INTRODUCTION/HISTORY

This design study report has been prepared to document the basis of design and design decisions for the Richardson Highway MP 359 Railroad Grade Separated Facility project. The limits of the project extend approximately 0.5 mile in either direction from the existing at-grade railroad crossing. The railroad crossing will be replaced with a grade separation in accordance with the Alaska State Rail Plan, developed by the Alaska Department of Transportation and Public Facilities (DOT&PF) and Alaska Railroad Corporation (ARRC).

Figure 1 – Location Map

PROJECT DESCRIPTION

The DOT&PF, in cooperation with the Federal Highway Administration (FHWA), proposes to improve the Richardson Highway near milepost (MP) 359. The existing facility is a divided, four lane highway with level terrain and full controlled access. From west to east, the highway follows a slight S-curve and enters a tangent section before crossing the ARRC tracks.

The proposed project will reconstruct approximately 1 mile of the Richardson Highway at its intersection with the railroad. The project work will include construction of a twin single-span grade separation between the Richardson Highway and the ARRC tracks. Work also includes reconstructing the north and southbound lanes, constructing retaining walls, improving ditches and drainage, and adding an undercrossing for use by troops at Fort Wainwright. A multi-use pathway will be constructed that connects into a separate pathway project that extends from Fairbanks to North Pole.

Figure 2 – Project Limits

DESIGN STANDARDS

Design standards and guidelines that apply to this project are contained in the following publications:

Standards:

- *A Policy on Geometric Design of Highways and Streets*, 6th Edition, American Association of State Highway and Transportation Officials (AASHTO), 2011
- Roadside Design Guide, 4th Edition, AASHTO, 2011
- Alaska Highway Preconstruction Manual, State of Alaska, DOT&PF, 2020
- Alaska Highway Drainage Manual, State of Alaska, DOT&PF, 2006

- The *Alaska Traffic Manual*, consisting of the *Manual on Uniform Traffic Control Devices*, 2009 as amended, United States Department of Transportation, FHWA and the *Alaska Traffic Manual Supplement*, State of Alaska, DOT&PF, 2016
- *ADA Standards for Transportation Facilities*, United States Department of Transportation, 2006
- Guide for the Development of Bicycle Facilities, 4th Edition, AASHTO, 2012
- *Recommended Practice for Roadway Lighting* (RP-8-14), American National Standards Institute/Illuminating Engineering Society, 2014
- Highway Capacity Manual, 5th Edition, Transportation Research Board, 2010
- LRFD Bridge Design Specifications, 9th Edition, AASHTO, 2020
- Alaska Bridges and Structures Manual, State of Alaska, DOT&PF, 2017
- AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition, AASHTO, 2011, with 2012, 2014, and 2015 Interim Revisions

Guidelines:

- Alaska Flexible Pavement Design Manual, State of Alaska, DOT&PF, 2020
- *Guide for the Planning, Design, and Operation of Pedestrian Facilities*, 1st Edition, AASHTO, 2004

Appendix A contains the project Design Criteria and Design Designation.

DESIGN EXCEPTIONS AND DESIGN WAIVERS

There are no design exceptions or design waivers for this project.

DESIGN ALTERNATIVES

Design alternatives for the bridge overcrossing and the troop undercrossing were evaluated. The following bridge alternatives were developed and evaluated for the overcrossing.

- **Bridge Alternative 1 Single-span Deck Bulb-T.** Alternative 1 would construct twin single-span deck bulb-T girders with mechanically stabilized earth (MSE) retaining walls at the bridge abutments to reduce bridge length.
- Bridge Alternative 2 Three-span Deck Bulb-T. Alternative 2 would construct twin three-span deck bulb-T girders with slopes at the bridge abutments.
- Bridge Alternative 3 Single-Span Steel. Alternative 3 would construct twin single-span steel girders with slopes at the bridge abutments.

The project includes a troop underpass of Richardson Highway to accommodate the movement of troops between the portions of Fort Wainwright located north and south of the highway. The underpass was sized to match typical multi-use path clear opening requirements of 10 feet high and 12 feet wide. The underpass is to be located east of the railroad tracks in a location where the roadway profile provides adequate clearance above the path. A longer bridge to accommodate a

troop crossing adjacent to the railroad was evaluated. ARRC indicated that this access should be separate from the railroad grade separation as a troop underpass.

The troop underpass could be accommodated with a very short-span bridge or a buried structure. Possible buried structure types include various three- or four-sided structures. Three-sided structures required footings on each side to support the side walls, top slab, and fill above. Three-or four-sided structures could be elliptical or arched configurations of precast concrete, cast-in-place concrete, or corrugated steel or aluminum; or they could be rectangular of precast or cast-in-place concrete. Elliptical and arched configurations would require longer span lengths and higher vertical clearance in the center of the path than a rectangular structural section in order to accommodate the required horizontal and vertical clearance.

PREFERRED DESIGN ALTERNATIVE

Twin single-span decked bulb-T girder bridges on shared MSE wall abutments were found to be the most cost-effective bridges for this project.

The proposed twin bridge configuration was found to be the most cost-effective solution for this interchange, having both the lowest initial construction cost and anticipated long-term maintenance cost. Decked bulb-T girder bridges are commonly constructed throughout the state. Similar bridges have recently been constructed at the Montana Creek and Sunshine railroad grade-separated crossing on the Parks Highway. Contractors in Alaska are familiar with this bridge type. The prefabricated girder can be built quickly to better accommodate Alaska's short construction season while incorporating high-quality materials. Consequently, decked bulb-T girder bridges have been found to be a highly durable, low-maintenance structure.

For the troop underpass, a buried structure was chosen over a short-span bridge to reduce maintenance concerns with bridge decks and pavement to bridge deck joints, to minimize the potential negative impacts from differential settlement, and to save construction cost. The underpass was located to maintain required fill over the top of the underpass top slab of at least 2 feet at the median ditch and a maximum of approximately 7 feet on the median side of the southbound lanes. A location farther west would have had additional overburden fill, which would require additional structure.

Geotechnical explorations near the proposed troop underpass indicate soils without significant short- or long-term settlement concerns.

An elliptical metal culvert was chosen for the troop underpass for its ease of construction and to provide the most cost-effective solution. The design includes a vertical concrete headwall on the north side with abutting MSE walls on the east and west sides, and a sloped concrete headwall on the south side of the undercrossing. Perimeter fencing at the structure access points will be included to secure entry from the public.

3R ANALYSIS

Not applicable. This is a reconstruction project.

TRAFFIC ANALYSIS

The existing traffic volumes of the Richardson Highway through the project corridor are 26,000 average daily traffic. The projected traffic volumes for the design year (2045) are 35,900 average daily traffic. These projections are based on the Fairbanks Metropolitan Area Transportation System travel demand model.

The grade separation of the railroad crossing removes all vehicle delays associated with train crossings and vehicles required by law to stop at the tracks. The proposed concept also eliminates the crash risk associated with stopping and weaving conflicts and stalled vehicles at the at-grade railroad crossing.

Further description of the projections and traffic and safety analysis are included in Appendix C.

HORIZONTAL/VERTICAL ALIGNMENT

The Richardson Highway proposed horizontal alignment matches the alignment of the existing highway. The highway for most of the project limits is in a tangent, but the northbound lanes will require reconstruction of an existing 14-degree horizontal curve. The vertical alignment is elevated by as much as 30 feet to provide adequate (23 feet minimum) bridge clearance for the new ARRC undercrossing. The maximum grade for the raised vertical is 3 percent, which follows the project design criteria. Both the horizontal and vertical alignments will meet the criteria for 70 miles per hour.

See Appendix E for the preliminary plan and profile sheets.

TYPICAL SECTION(S)

The proposed typical section consists of four 12-foot lanes, two in each travel direction with 10-foot outside shoulders, 4-foot inside shoulders, and a 36-foot-wide median with 6:1 side slopes. As the road embankment is raised to accommodate the railroad undercrossing, exterior slopes will be steepened beyond the clear zone or an MSE wall will be utilized to ensure that all improvements are located within the existing right-of-way (ROW). The multi-use pathway will also be brought adjacent to the roadway to reduce bridge costs over the ARRC crossing.

See Figures 3 and 4 for preliminary typical sections.

Figure 3 – Typical Section

Figure 4 – Typical Section

PAVEMENT DESIGN

The pavement design for this project followed the procedures and guidelines in the *Alaska Flexible Pavement Design Manual*. The design life of the pavement is 15 years. The projected design year values for heavy vehicle percentages and equivalent axle loading can be found in the Design Criteria in Appendix A.

The Richardson Highway pavement design consists of the following layers:

- 4-inch Hot Mix Asphalt, Type II; Class B
- 4-inch Asphalt Treated Base
- 8-inch Subbase, Grading F
- 24-inch Selected Material, Type A
- Selected Material, Type B will be used for all other embankment

See Appendix D for the approved pavement design.

PRELIMINARY BRIDGE LAYOUT

This project includes the construction of a pair of twin single-span decked bulb-T girder bridges over the railroad. Each bridge is approximately 83 feet long. The southbound bridge width is 40.5 feet and the northbound bridge width is 51.5 feet. The northbound bridge is 11 feet wider than the southbound bridge in order to accommodate the pedestrian pathway.

See Appendix F for the preliminary bridge plans.

RIGHT-OF-WAY REQUIREMENTS

All improvements will occur within existing ROW limits.

MAINTENANCE CONSIDERATIONS

Maintenance of the Richardson Highway will remain the responsibility of the State of Alaska and the local DOT&PF Maintenance and Operations station. Based on discussions with maintenance and operations staff, the maintenance efforts are expected to be reduced with the project improvements because of the grade separation. The existing roadway maintenance responsibility is an estimated 3.21 lane-miles within the project limits. After project construction, the roadway maintenance responsibility will be reduced to 2.67 lane-miles. The proposed multi-use pathway will add 0.65 lane-mile of maintenance responsibility. DOT&PF Maintenance and Operations does not maintain other separated pathways in the winter and does not plan on maintaining the proposed multi-use pathway for this project in the winter either.

DOT&PF Maintenance and Operations has requested all foreslopes be constructed at a 4:1 slope or flatter. Because of the constrained ROW on the southern side of the highway, the project is currently proposing a 4:1 slope until the edge of clear zone, where the slope will be steepened to 2:1. Maintenance and Operations has also requested that all new fencing installed be 6 feet in height, except for Fort Wainwright perimeter fencing which will match existing height and material.

MATERIAL SOURCES

All material sources will be contractor furnished. There are sufficient commercial material sources capable of providing quality materials meeting project specifications.

UTILITY RELOCATION & COORDINATION

Existing railroad utilities outside the railroad easement that are associated with the at-grade crossing will be decommissioned, salvaged, and given to ARRC. Coordination with ARRC will be required to determine construction staging and schedule. A utility agreement with ARRC will also be required for a construction zone flagger and for any temporary signal/gate installation that may be necessary.

Alaska Communications has one buried cable within the project limits. The line is adjacent to the railroad crossing and will be relocated as necessary.

Golden Valley Electrical Association has one electrical overhead transmission line that crosses the corridor near the railroad tracks. Another Golden Valley Electrical Association overhead transmission line runs parallel along the southern side of the Richardson Highway. The line that crosses the highway will need to be raised or relocated to provide a minimum vertical clearance of 20.5 feet over the roadway. The line that runs parallel will require several poles to be adjusted to finished grade.

See Appendix G for a list of utility conflicts and preliminary project cross sections.

ACCESS CONTROL FEATURES

The Richardson Highway, within the project limits, is a full access-controlled facility. Interchange on and off-ramps are located to the west (Mitchell Expressway) and east (Badger Road) of the project. No change to access control features are proposed.

PEDESTRIAN/BICYCLE (ADA) PROVISIONS

A multi-use pathway will be constructed along the entire length of the project and will connect to a pathway that is currently in design that will connect Fairbanks to North Pole (Richardson Highway MP 356-362 Bicycle and Pedestrian Facility project). The pathway will be elevated over the ARRC crossing on the proposed northbound bridge. All aspects of the pedestrian facility will be in ADA compliance, including profile grades and cross slopes.

SAFETY IMPROVEMENTS

The proposed project will eliminate one of the primary vehicle conflict points within the corridor, the at-grade railroad crossing. Though the instance of crashes is relatively low at this location, potential severity of these crashes is high due to highway speeds.

A primary objective of the Alaska State Rail Plan is to remove at-grade railroad/highway crossings throughout the state to enhance safety. A focal point of this effort is to grade separate all crossings on Alaska's National Highway System (NHS) routes. As a part of the Richardson Highway/Steese Expressway Corridor Planning and Environmental Linkages Study, the Diagnostic Team supported the grade separation of this crossing.

The environmental document discusses the occurrence of dense ice fog events during the winter, which are generated by the Fort Wainwright power plant's cooling ponds. This ice fog can severely limit visibility through the project area and pose safety issues. The environmental document states that elevating and lighting the highway should help mitigate the ice fog's impact.

Dedicated non-motorized transportation facilities are not currently located within the project limits. The Alaska Administrative Code restricts pedestrian use except in an emergency; however, pedestrians currently utilize the highway shoulders because of the lack of nearby alternate routes. The addition of a multi-use pathway on the northern side of the Richardson Highway will improve safety by increasing the separation between non-motorized transportation users and freeway traffic.

INTELLIGENT TRANSPORTATION SYSTEM FEATURES

Not applicable. There are no intelligent transportation system features within the project limits.

DRAINAGE

The project area encompasses approximately 20.3 acres of terrain. There is a net reduction of impervious area throughout the corridor. The amount of precipitation is consistent throughout the project site because of its relatively small size. The median ditches and the area south of the Richardson Highway generally drains to a cluster of ponds south of (away from) the project area. The overflow of these ponds drains south, toward the Tanana River. The project area north of the highway includes a flat vegetated swale, causing surface runoff to slow and infiltrate.

The Richardson Highway and railroad tracks are higher than the surrounding terrain. There is one 24-inch culvert inside the project limits draining the water from the median ditch south

toward the Tanana River. This culvert will need to be removed and replaced in kind to maintain adequate drainage.

Wood curbs will be installed at the base of the guardrail with riprap downdrains at the ends of the curb to collect runoff traveling from the crest curve situated at the ARRC track crossing. The curb and downdrains will protect the embankment, and soil stabilization features will be designed to handle the concentrated flows that could erode the fill slopes.

SOIL CONDITIONS

According to test hole bore logs for the Richardson Highway MP 357-362 Bicycle/Pedestrian Path project, underlying soils are characteristic of Fairbanks with intermixed layers of gravel, sand, and silt. Frost-susceptible soils are present. Exploration drilling for the bridge abutments is currently (as of October 29, 2020) in progress and expected to be completed no later than November 10, 2020.

Borings recently completed on-site for Railroad Overcrossing Bridge encountered the following generalized subsurface profile (listed in sequential order of soil lithology from ground surface to bottom of approximately 100-foot boring):

- 0- to 2-inch organic mat
- 2-inch to 7.5-foot thawed dry loose to medium dense poorly graded and with silt and gravel
- 7.5- to 14 foot thawed loose moist to wet silt with sand
- 14- to 22 foot thawed loose wet silty sand; interval was heaving significantly
- 22- to 29 foot thawed wet loose gravel with silt and sand
- 29- to 49 foot thawed wet loose poorly graded sand with silt
- 49- to 59 foot frozen (Nbn) silty sand
- 59- to 89 foot frozen (Nbn) and frozen poorly graded gravel
- 89- to 100 foot frozen (Nbn) poorly graded gravel

The average monthly air temperature, freezing degree days, and thawing degree days for Fairbanks International Airport from 1949-2012 are provided in Table 1. Historical climate data was taken from the Western Regional Climate Center website using the National Oceanic and Atmospheric Administration Cooperative Stations data. The mean annual air temperature is 26.9 degrees Fahrenheit (°F), and the freezing index is 5,266 °F-days and the thawing index is 3,459 °F-days.

Month	Mean Temperature (°F)	Freezing Degree Days (°F-days)	Thawing Degree Days (°F-days)
January	-10.2	1308	0
February	-2.7	980	0
March	10.1	679	0
April	31.6	12	0
May	49	0	527
June	60.1	0	843
July	62.1	0	933
August	56.5	0	760
September	45.2	0	396
October	24.8	223	0
November	3.2	864	0
December	-6.7	1200	0
	TOTAL	5,266	3,459

 Table 1: Climate Data

EROSION AND SEDIMENT CONTROL

Proper implementation of temporary and permanent erosion and sediment control measures will play a critical role in the successful construction and commission of the project. A stormwater pollution prevention plan (SWPPP) conforming to the project's erosion and sediment control plan (ESCP) will be required from the construction contractor. The ESCP outlines the best management practices (BMPs) during construction and provides detail on areas in need of additional protection. The contractor will submit the SWPPP for approval to the construction project engineer. All construction activities will be conducted in accordance with the approved SWPPP.

The major work items requiring erosion/sediment control measures will include work associated with grading and excavation of the road and diversions. The best management practices called for in the ESCP and the SWPPP will be implemented to control erosion and minimize sediment leaving the project.

ENVIRONMENTAL COMMITMENTS

A Categorical Exclusion has been prepared and approved for this project. The environmental commitments are listed below.

Environmental Commitments:

• No mechanical vegetation clearing during the U.S. Fish and Wildlife Servicerecommended nesting window of May 1 to July 5. Contact DOT&PF environmental staff if the proposed project activities cannot occur outside the bird nesting season. Surveys would be conducted no more than 5 days prior to scheduled activity. If any active nests or breeding bird behavior are detected within the area of impact during surveys, no vegetation removal activities should be conducted until nestlings have fledged or the nest fails or breeding behaviors are no longer observed. If the activity must occur, establish a buffer zone around the nest and no activities will occur within that zone until nestlings have fledged and left the nest area.

Mitigation Measures:

• Cost-efficient mitigation measures (e.g., wash equipment) are recommended to minimize the transport of propagules off-site. Prevention measures to reduce the risk of introducing additional species include using certified weed-free seed mixes for revegetation.

See Appendix B for the environmental document.

WORK ZONE TRAFFIC CONTROL

This project is not a significant project as defined in Chapter 14 of the Alaska Highway Preconstruction Manual.

Temporary TCPs will be developed at final design to show major construction and traffic maintenance sequencing. The contractor will develop a TCP during construction to safely guide and protect the traveling public in work zones, in accordance with the Alaska Traffic Manual and the project specifications. The contractor will be required to coordinate with ARRC for traffic control and temporary railroad signals during construction. The plan will be assessed and approved by the construction project engineer and the traffic control engineer. The contractor is responsible for providing advance notice to the public—including local businesses, residents, and road travelers—of construction activities that could cause delays, detours, or affect access to adjacent properties.

VALUE ENGINEERING

A value engineering study is not required for this project.

COST ESTIMATE

The estimated costs for this project are as follows:

Design	\$1,347,892
Utilities	\$4,000,000
Right of Way	\$0.00
Construction (Includes 14% Engineering, 4.75% ICAP)	\$24,000,000
Total Cost of Project	\$29,347,892

APPENDIX A

DESIGN CRITERIA AND DESIGN DESIGNATION

ALASKA DOT&PF PRECONSTRUCTION MANUAL Chapter 11 - Design PROJECT DESIGN CRITERIA

Project Name:	Richardson High	way MP 359 I	Railroad Grade S	eparated Facility			
New Construction/Reconstruction	3R	D PM	C Other	1			
Project Number:	Z607340000/0A2	24(033)		· [V NHS	Non NHS	
Functional Classification:	Interstate						
Design Year:	2045		Present ADT:			26,000 (2019	
Design Year ADT:	35,900						
DHV:	11.60% Directional Split:					35-65	
Percent Trucks:	4.85%		Equivalent AxI	e Loading:		6,116,740	
Pavement Design Year:	2037						
Terrain:	Level		Number of Roa	adways:		2	
Design Speed:	70 MPH		Service States		-		
Lane Width:	12 ft				4 6		
Shoulder Width:	Outside:	10 ft		Inside:	4 ft	Cardina Station	
Cross Slope:	2%	1. 1. 1. 1. 1.		No. of the other			
Superelevation:	6% (max)	Section State			a sur		
Min. Radius of Horizontal Curvature:	2040					10	
Maximum Allowable Grade:	3%					Sales and the second	
Stopping Sight Distance:	730 ft		TANK MARAN		512512		
Vertical Clearance:	20'-6" - overhead	utilites; 23'-0	" - railroad	States and the	ALC: NO.		
Design Loading Structural Capacity:	HL 93	10 34	Enice Chang		Tene In	STATE SAME STATE	
Bridge Width:	38 ft Each Struct	ure (excluding	shared use path)			
Min. Allowable Grade:	0.5%						
Min. K-Value for Vert. Curves:	Sag:	181		Crest:	247		
Passing Sight Distance:	N/A		8				
Surface Treatment:	T/W:	Bitumino	ous	Shoulders:	Bitumin	ous	
Side Slope Ratios:	Foreslopes:	Varies		Backslopes:	Varies		
Degree of Access Control:	Full Access Cont	rol					
Median Treatment:	Depressed						
Illumination:	Partial						
Lateral Offset to Obstruction:	N/A						
Curb Usage and Type:	N/A						
Bicycle Provisions:	Shared Use Path						
Pedestrian Provisions:	Shared Use Path						
Misc. Criteria:	None						

Proposed - Designer/Consultant: Endorsed - Engineering Manager:

Approved - Preconstruction Engineer:

Date: Date: 09 Date:

Shaded criteria are commonly referred to as *FHWA controlling criteria for NHS high-speed roadways (design speed >= to 50 mph)*. For NHS low-speed roadways (design speed < 50 mph), the only two *FHWA controlling criteria* which apply are design speed and design loading structural capacity. For NHS routes only, controlling criteria must meet the minimums established in the Green Book, unless a design exception is approved. For all other routes, all criteria must meet the minimums established in the Alaska Highway Preconstruction Manual, unless a Design Waiver is approved.

Design Criteria marked with a " # " do not meet minimums and must have a Design Exception(s) and/or Design Waiver(s) approved. See the Design Study Report for Design Exception/Design Waiver approval(s) and approved design criteria values.

MEMORANDUM

State of Alaska

Department of Transportation & Public Facilities

TO: Sarah E. Schacher, P.E., Preconstruction Engineer Northern Region

DATE: July 10, 2020

FILE NO: I:\Traffic Data\Design\2020\RichHwyMP359_Z607340000

TELEPHONE 451-5150 NO:

FROM: Scott Vockeroth **SUBJECT:** Richardson Highway MP 359 Railroad Grade Traffic Data Manager Fairbanks Field Office

Design Designation Request

Separation Z607340000/0A24(033)

Please approve the attached design designation by signing the endorsement below which enables your staff to proceed.

Contact our office if you have any questions.

Amhan

Sarah E. Schacher, P.E., Preconstruction Engineer

7/13/2020

Date

Colleen Ackiss, P.E., Engineer, Northern Region cc:

Attachment

DESIGN DESIGNATION Northern Region Planning Traffic Data & Forecasting

ROUTE NAME:	Richardson Highway
CDS NO:	190000
ROUTE ID:	11000001000
MILEPOINT:	360.210-360.930
FUNCTIONAL CLASS:	Interstate
URBAN/RURAL:	Urban

	YEAR	AADT	%	
	2019	26,000		
AADT	2035	31,700		
	2045	35,900		
DHV	2035		11.60	3700
	2045			4200
D(30)				35-65
Т			4.85	Total
			0.10	Class 4
			1.05	Class 5
			1.00	Class 6
			1.50	Class 8
			0.40	Class 9
			0.65	Class 10
			0.15	Class 13
ESAL'S	To Be Provided			
(Design	by Design			
Lane)				

	odate:	Data Request Record has been assigned to an email address.
-	following e-mail address:	jill.melcher@alaska.gov; scott.vockeroth@alaska.gov
ecord Creation		July 08, 2020 01:56:49 PM July 08, 2020 03:16:15 PM
equest Resolut	ned e-mail address:	Resolution Pending
equestor irst Name: *	Colleen	Last Name: * Ackiss
mail: *		Last Name: * Ackiss
.maii: * Idditional Email	colleen.ackiss@alaska.gov	
Contacts:	colleen.ackiss@alaska.gov	<u>+</u>
AKST)	07 / 24 / 2020	G
oject Informatio	n	
roject Name: *	Richardson Highway MP 359 Railroad	Grade Separation
roject ingineer(s): *	Colleen Ackiss	+
tate Project	Z607340000	
lumber: * ederal Project	0A24(033)	
lumber: *	190000 and 190000SB	
Ailepoint		
To/From): *	360.210 to 360.930 and 2.609 to 4.08	0
Construction Year	2024	
ease select the t	ype of project. *	
		Reconstruction
		C Rehabilitation
		O New Construction
oject Notes: roject will be irection.		ase describe): Reconstruction (highway over railroad. There will be two lanes in each
roject will be		
roject will be direction.	constructing a grade separation	
roject will be direction.	constructing a grade separation	(highway over railroad. There will be two lanes in each
roject will be direction.	constructing a grade separation	(highway over railroad. There will be two lanes in each
roject will be direction.	constructing a grade separation	(highway over railroad. There will be two lanes in each elds that are available to request. * Central © • Northern *
roject will be irection.	constructing a grade separation	(highway over railroad. There will be two lanes in each elds that are available to request. *
roject will be irection. ease select the p ata Fields Reques	constructing a grade separation	(highway over railroad. There will be two lanes in each elds that are available to request. * Central © • Northern *
roject will be irection. ease select the p ata Fields Reques	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) *	<pre>(highway over railroad. There will be two lanes in each elds that are available to request. *</pre>
ease select the p ata Fields Reques Present AADT Design Year AA	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) *	(highway over railroad. There will be two lanes in each elds that are available to request. * Central O Northern * Southcoast O (Please specify Year) 2045
roject will be irection. ease select the p ata Fields Reques	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) *	<pre>(highway over railroad. There will be two lanes in each elds that are available to request. *</pre>
ease select the p ata Fields Reques Present AADT Design Year AA	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) *	(highway over railroad. There will be two lanes in each elds that are available to request. * Central O Northern * Southcoast O (Please specify Year) 2045
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) *	(highway over railroad. There will be two lanes in each elds that are available to request. * Central O Northern * Southcoast O (Please specify Year) 2045
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA (Mid-Design Year Design Hourly V Directional Spli	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * VDT ar AADT Volume (DHV) t (D)	(highway over railroad. There will be two lanes in each elds that are available to request. • Central O Northern * Southcoast O (Please specify Year) 2045
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly V Directional Split Percent Trucks	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * VDT ar AADT Volume (DHV) t (D)	(highway over railroad. There will be two lanes in each elds that are available to request. • Central O Northern * Southcoast O (Please specify Year) 2045
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly V Directional Split Percent Trucks Road Functional	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * \DT ar AADT Volume (DHV) t (D) al Classification	(highway over railroad. There will be two lanes in each elds that are available to request. * Central Northern Southcoast (Please specify Year) 2045 (Please specify Year) 2035
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly V Directional Split Percent Trucks Road Functional	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * VDT ar AADT Volume (DHV) t (D)	(highway over railroad. There will be two lanes in each elds that are available to request. * Central Northern Southcoast (Please specify Year) 2045 (Please specify Year) 2035
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly V Directional Split Percent Trucks Road Functional	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * \DT ar AADT Volume (DHV) t (D) al Classification	(highway over railroad. There will be two lanes in each elds that are available to request. * Central Northern Southcoast (Please specify Year) 2045 (Please specify Year) 2035
roject will be irection. ease select the p ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly V Directional Split Percent Trucks Road Functional	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * \DT ar AADT Volume (DHV) t (D) al Classification	(highway over railroad. There will be two lanes in each elds that are available to request. * Central Northern Southcoast (Please specify Year) 2045 (Please specify Year) 2035
ata Fields Reques ata Fields Reques Present AADT Design Year AA Mid-Design Year Design Hourly Directional Split Percent Trucks Road Functional Intersection Tur	constructing a grade separation project's region to view the Data Fi sted: (please pick at least one) * \DT ar AADT Volume (DHV) t (D) al Classification	(highway over railroad. There will be two lanes in each elds that are available to request. * Central Northern Southcoast (Please specify Year) 2045 (Please specify Year) 2035 ions) ions)

Traffic Da	-					TDR Form-1-10/20/03		
Alaska Departi	ment of Tra	nspor	tation & Pub	olic Facilities				
Requested By: Colleen Ackiss			Design Project Number:		Date Requested:			
				Z60734000	7/8/20			
Base Year:	2019			Common Route Na Richardson Hig	CDS Route Name:			
Base Year Tota	I AADT:	2	6,000	Functional Class:	inway	CDS- 190000 Route- 11000001000		
AADT Growth	Rate		-,	Urban/Rural	Interstate	Roule- 11000001000		
Forward (%	/yr): 1.25	End \	/ear: 2045	Historic M.P. Interv	val·	CDS M.P. Interval:		
Back Cast (%/vr):	Begir	n Year:		ai.			
Buok Cuot (/ 3/ 9 · <i>)</i> ·	Dogi	litouri			360.210-360.930		
				Lane Configuration (Designer: Provide sketch		Number each lane and		
Truck	Load Fac		% of Total	show directions.)		Indicate North		
Category	(ESALs Truck	-	AADT in Truck					
	HUCK)	Category					
2-axle	0 "			-				
3-axle	See attac	ned			- Westbound	4		
J-axie					— —	<u> </u>		
4-axle				#1	- Eastbound			
5-axle				-				
≥ 6-axle				-				
Percent of Bas	e Year Tota	al AAC	OT for Each	Comments:				
Numbered Lan	e in Config	juratio	on Sketch:	Percent base year	total AADT i	n each direction is		
Lane # 1	% 3	5- Eas	tbound	50-50, values in th				
Lane # 2	% 6	5- Wes	stbound	that location.				
Lane #	%			that location.				
Lane #	%							
Lane #	%							
Lane #	%							
Data Provided	By:		Provider's	Signature:	A	Date Provided		
Scott Vockeroth				70	th			
				\bigcirc		7/10/2020		

Figure 6-1. Traffic Data Request (TDR) Form

Route ID	Route Name
11000001000	Richardson Highway (Richardson Highway)

Me	easure	Feature	Location	Attribute1	Attribute2
		0	Route Begin		
		355	Report Begin		
		355 FHWA Urban Area	Begin	Urbanized Area Type: Urbanized Area	Urbanized Area Name: Fairbanks
		355 Functional Class	Begin	Functional Class: Interstate	
		355 Traffic Link	Begin	AADT: 19173	Traffic Link ID: AL001293
		964 Milepost	Point	Milepost_Number: 354	
3	55.9678	985 Intersections	Point	Intersection Name: Richardson Highway & Old Rich @ Badger Road 1	
3	56.1832	056 Intersections	Point	Intersection Name: Richardson Highway & Rozak Road 1	
3	56.6018	394 Milepost	Point	Milepost_Number: 355	
1	357.587	156 Milepost	Point	Milepost_Number: 356	
3	57.5994	172 Intersections	Point	Intersection Name: Richardson Highway & Davison Street 1	
1	357.812	179 Intersections	Point	Intersection Name: Richardson Highway & Frontage Road Spur	
1	358.277	735 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB Off-Ramp (Badger)	
3	58.6122	224 Milepost	Point	Milepost_Number: 357	
3	58.6499	206 Intersections	Point	Intersection Name: Richardson Highway & Badger Road 1	
3	59.1788	028 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB On-Ramp (Badger)	
3	59.1819	213 Traffic Link	End	AADT: 19173	Traffic Link ID: AL001293
3	59.1819	213 Traffic Link	Begin	AADT: 25923	Traffic Link ID: AL001294
3	59.5949	359 Milepost	Point	Milepost_Number: 358	
30	60.5927	306 Milepost	Point	Milepost_Number: 359	
30	61.1604	138 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB Off-Ramp (Old Rich @ S Fairbanks)	
30	61.1635	523 Traffic Link	End	AADT: 25923	Traffic Link ID: AL001294
30	61.1635	523 Traffic Link	Begin	AADT: 23144	Traffic Link ID: AL003286
30	61.5951	508 Milepost	Point	Milepost_Number: 360	
30	62.2358	948 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB Off-Ramp (Glenn SB On-Ramp)	
30	62.2390	134 Functional Class	End	Functional Class: Interstate	
30	62.2390	134 Functional Class	Begin	Functional Class: Principal Arterial - Other	
30	62.5509	573 Intersections	Point	Intersection Name: Richardson Highway & Parks NB Off-Ramp (Richardson NB On-Ramp) 1	
30	62.5540	758 Traffic Link	End	AADT: 23144	Traffic Link ID: AL003286
30	62.5540	758 Traffic Link	Begin	AADT: 20697	Traffic Link ID: AL001295
30	62.5969	127 Milepost	Point	Milepost_Number: 361	
30	62.6249	759 Intersections	Point	Intersection Name: Richardson Highway & Parks NB Off-Ramp (Richardson NB On-Ramp)	
30	62.6338	174 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB Off-Ramp (Glenn SB On-Ramp) 1	
30	62.8416	208 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB On-Ramp (Cushman) 1	
30	63.1710	161 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB On-Ramp (Cushman)	
30	63.5225	279 Milepost	Point	Milepost_Number: 362	
30	63.5890	101 Intersections	Point	Intersection Name: Richardson Highway & Richardson NB Off-Ramp (Gaffney)	
30	63.6531	171	Route End		
30	63.6531	171 FHWA Urban Area	End	Urbanized Area Type: Urbanized Area	Urbanized Area Name: Fairbanks
30	63.6531	171 Functional Class	End	Functional Class: Principal Arterial - Other	
30	63.6531	171 Traffic Link	End	AADT: 20697	Traffic Link ID: AL001295
30	63.6531	171	Report End		

Atlas Roadlog: 7/10/2020

Computations and Historical Data Project: Richardson Hwy MP 359 Railroad Grade Separation

Historical AADTs

HISTORICAL AAD IS						_
Link Otert ODO Otert Frankurs			4000 40	Yea		005
	nd CDS End		1980 19	81 1982 1	1983 1984 1	985
1 352.717 Old Rich Intersection 35 2 359.595 Badger NB On-Ramp 36		er NB On-Ramp amp to Old Rich		655 11976 1	3986 16698 17	7426
Link 1986 1987 1988 1989 1990						000
1 11157 9118 11133 11248 1435 2 16855 17137 16460 16748 1789			16093 8 21174 21 [.]		5263 15637 18 2516 21967 22	
Link 2001 2002 2003 2004 2005	5 2006 200 [°]	Year 7 2008 2009	2010 20	11 2012 2	2013 2014 2	015
1 16381 16325 1940					9768 16891 1	
2 22812 23102 23403 24090 2418	8 23934 2471	9 23371 2411	7 25289 248	376 24956 2	4578 24883 2	5187
Link 2016 2017 2018 2019 1 20129 19300 18684 19076 2 26179 25490 25812 25923						
Growth Rate1.25%Traffic trends along Richardson Hwy corridorGrowth Factors 2035YearFactor20351.22020451.381						
Year AADT 2019 26,000 2035 31,700 2045 35,900		D	Factor (3	30) 35-	-65	
K-Factor (30) 11.60% Obtai	ned from Con	tinous Count at	t Richardso	n Hwy @ Big	g Bend (MP 359	9)
Design Hourly Volume (DHV)	2035 370 2045 420					
Class Data			Perce	ent by Class	5	То
Station ID Station Description	MP Y	ear 4 5	6	8 9	10 13	Truc
13420514 Richardson Hwy at MP 359			.05 1.00	1.50 0.40		4.8
	Load Factor	1.00 0.	50 0.85	1.20 1.55	2.24 2.24	

Number of Axles 2/3 2 3

7+

4

5

6

APPENDIX B

ENVIRONMENTAL DOCUMENT

State of Alaska Department of Transportation & Public Facilities

CATEGORICAL EXCLUSION DOCUMENTATION FORM

(NEPA Assignment Program Projects)

The environmental review, consultation, and other actions required by the applicable Federal environmental laws for this project are being, or have been carried out by the DOT&PF pursuant to 23 U.S.C 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

I. Project Information:

- A. Project Name: Richardson Highway MP 359 Railroad Grade Separated Facility
- **B.** Federal Project Number: A024033
- C. State Project Number: Z607340000
- **D.** Primary/Ancillary Project Connections: none
- **E.** CE Designation: 23 CFR 771.117(c)(22)
- **F.** List of Attachments:
 - 1A- Study Area Map
 - 1B- Project Overview Map
 - 2A- Section 106 Consultation Initiation
 - 2B- Section 106 Findings
 - 2C- Section 106 SHPO Concurrence
 - 2D- Section 106- PA Update
 - 3A- FNSB Air Quality Boundaries and Exhibits
 - 3B- Conformity Analysis for the 2040 Metropolitan Transportation Plan
 - 3C- Air Quality Conformity Memorandum
 - 4A-Flood Zone A Figure
 - 4B- Flood Zone A Map
 - 4C- Location Hydraulics Study
 - 5- Noise Memorandum
 - 6- Website Content for Online Open House
 - 7- Fairbanks Daily News-Miner Ad
 - 8- Online Public Notice
 - 9A- Agency Scoping Letter and Distribution List
 - 9B- Agency Comments and Responses
 - 10A- Stakeholder Meeting Agenda
 - 10B-Stakeholder Meeting Sign-in Sheet
 - 10C- Public and Stakeholder Comments and Responses

G. Project Scope (Use STIP Project Description)

Need ID 28069: Construct grade-separated facility on the Richardson Highway to improve operations and reduce railroad/vehicular conflicts. Work includes a new bridge.

H. Project Purpose and Need:

The proposed project will make improvements to operations and safety in the vicinity of MP 359 of the Richardson Highway with roadway upgrades and the addition of a new grade separation.

The proposed project area is bordered by federal military land to the north and south, with private, mostly industrial land to the south west (Attachment 1A). The Richardson Highway supports military operations at both Fort Wainwright Army and Eielson Air Force bases and is considered part of the National System of Interstate Defense Highways and the Strategic Highway Network. The proposed Richardson Highway MP 359 Railroad Grade Separated Facility project supports the continued transition of the segment of the Richardson Highway between Fairbanks and the Eielson Air Force Base to a controlled-access freeway (Fairbanks Metropolitan Area Transportation System [FMATS] Policy Committee resolution, 1984).

Studies indicate that safety improvements are needed in the project area due to the potential severity of crashes at highway speeds (Kittelson and Associates, June 2017). The project will address this need by eliminating a vehicle conflict point, the at-grade railroad crossing, which does not meet driver expectations for a freeway facility. Removing the at-grade railroad crossing will also improve operations by reducing delays.

The Richardson Highway is a critical freight corridor and is a part of the National Highway Freight Network, connecting Fairbanks and North Pole with communities in eastern Alaska, Canada, and the contiguous 48 states. This highway has a large percentage of truck traffic and is designated as an official route for long combination vehicles (17 AAC 25.014). Current operations require some westbound vehicles, often freight traffic hauling hazardous materials, to stop at the railroad crossing using auxiliary pullout lanes on the right-hand side of the highway and then accelerate to highway speed while making three lane changes in less than a half mile along a horizontal curve to exit left to the Old Richardson Highway. Replacing the at-grade railroad crossing with a grade-separated bridge will remove the need to stop in the auxiliary lane and allow drivers to prepare for the left exit outside of the half mile section.

I. Project Description:

The project will replace the existing at-grade railroad crossing and signal infrastructure with a new gradeseparated bridge that raises the Richardson Highway main line over the railroad (Attachment 1B). Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, separated pathway, utility relocates, and overhead transmission lines. This project will coordinate with a portion of a planned, separated-pathway concept along the northern Richardson Highway right-of-way line, which is part of the Richardson Highway MP 356-362 Bicycle and Pedestrian Facility project. In addition, troop access will be provided to connect Fort Wainwright lands located both north and south of the Richardson Highway. All work will occur within the existing Alaska DOT&PF right-of way.

II. Environmental Consequences

- > For each "yes," summarize the activity evaluated and the magnitude of the impact.
- For any consequence category with an asterisk (*), additional information must be attached such as an alternatives analysis, agency coordination or consultation, avoidance measures, public notices, or mitigation statement.
- > Include direct and indirect impacts in each analysis.

A. <u>Right-of-Way Impacts</u> N/A YES NO 1. Additional right-of-way required. If no, skip to 2. a. Permanent easements required. Estimated number of parcels: <u>N/A</u> b. Full or partial property acquisition required.

2 of 16 Project Name: Richardson Highway MP 359 Railroad Grade Separated Facility State Project Number: Z607340000 /Federal Project Number: A024033

A. <u>Right-of-Way Impacts</u>

Estimated	numbor	of full	maraal	$\sim NI/\Lambda$
Estimated	number	or run	parcer	S. $\underline{\mathbf{N}/\mathbf{A}}$

Estimated number of partial parcels: N/A

- **c.** Property transfer from state or federal agency required. *If yes, list agency in No. 4 below.*
- **d.** Business or residential relocations required. If yes, insert the number of relocations below, summarize the findings of the conceptual stage relocation study in No. 4 below and attach the conceptual stage relocation study. If no, skip to 2.
 - i. Number of business relocations: N/A
 - ii. Number of residential relocations: N/A
- e. Last-resort housing required.
- 2. Will the project or activity have disproportionately high and adverse human health or environmental effects on minority populations and low-income populations as defined in E.O. 12898 (FHWA Order 6640.23A, June 2012)?
- 3. The project will involve use of ANILCA land that requires an <u>ANILCA Title</u>
- 4. Summarize the right-of-way impacts, if any:

The project will have no right-of-way impacts. The project will use existing right-of-way and will not require acquisition of adjacent private or federal land.

B.	. <u>Social and Cultural Impacts</u>				
	1.	The project will affect neighborhoods or community cohesion.		\square	
	2.	The project will affect travel patterns and accessibility (e.g. vehicular, commuter, bicycle, or pedestrian).	\square		
	3.	The project will affect school boundaries, recreation areas, churches, businesses, police and fire protection, etc.		\boxtimes	
	4.	The project will affect the elderly, handicapped, nondrivers, transit-dependent, minority and ethnic groups, or the economically disadvantaged.	\square		
	5.	There are unresolved project issues or concerns of a federally-recognized Indian Tribe [as defined in <u>36 CFR 800.16(m)</u>].		\boxtimes	

6. Summarize the social and cultural impacts, if any:

There will be no negative effects to neighborhoods or community. The project will foster improved accessibility for freight by reducing delays at the railroad crossing and eliminating the need for out-of-direction travel patterns for northbound access from the Old Richardson Highway to the Richardson Highway. Both the troop/pedestrian underpass and the bike/pedestrian path will increase community livability and sustainability through improved access for non-drivers. Additionally, the reduced risk of vehicle conflict is a safety benefit to the community.

N/A

YES

 \square

NO

 \boxtimes

C.	Ec	onomic Impacts		YES	<u>NO</u>
	1. 2.	The project will have adverse economic impacts on the regional and/or local economy, such as effects on development, tax revenues and public expenditures, employment opportunities, accessibility, and retail sales. The project will adversely affect established businesses or business districts.			\boxtimes
	3.	Summarize the economic impacts, if any:			
		The proposed project will not have adverse economic impacts. Construction will employment opportunities, which could be filled by local workers. Increased par businesses from construction workers is another temporary positive impact of co	tronage	to local	term
D.	La	nd Use and Transportation Plans	<u>N/A</u>	YES	<u>NO</u>
		Project is consistent with land use plan(s).		\boxtimes	
	2.	Identify the land use plan(s) and date <u>Fort Wainwright West Post District</u> <u>Area Development Plan, January 2017</u> Project is consistent with transportation plan(s).		\boxtimes	
	3. 4.	Identify the transportation plan(s) and date. <u>Fairbanks Metropolitan Area</u> <u>Transportation System Freight Mobility Plan - Existing Conditions Report,</u> <u>February 2017; Richardson Highway/Steese Expressway Corridor Planning</u> <u>and Environmental Linkages Study, September 2015; Fairbanks Metro</u> <u>Area Transportation Plan: A Roadmap to 2040, January 2015.</u> Project would induce adverse indirect and cumulative effects on land use or transportation. <i>If yes, attach analysis.</i> Summarize how the project is consistent or inconsistent with the land use plan(s) and transportation plan(s): The proposed project is consistent with existing transportation and land use plans introduce indirect or cumulative effects.	s and wi	□* Ill not	
E.	<u>Im</u>	pacts to Historic Properties	<u>N/A</u>	<u>YES</u>	<u>NO</u>
		Consider the <u>February 2015 DOT&PF Cultural Resources Confidentiality</u> <u>Guidelines</u> for cultural resource attachments.			
	1.	Does the project involve a road that is included on the " <u>List of Roads Treated</u> as <u>Eligible</u> " in the Alaska Historic Roads PA? <i>If yes, follow the <u>Interim</u> <u>Guidance for Addressing Alaska Historic Roads</u>.</i>			\square
	2.	Does the project qualify as a Programmatic Allowance under the Section 106 Programmatic Agreement? If yes, attach the Section 106 PA Streamlined Project Review Screening Record approved by the Regional PQI and skip to 10.		*	
	3.	Date Consultation/Initiation Letters sent January 18, 2019 (Attachment 2A and project file) Attach copies to this form.			
		a. List consulting parties <u>Alaska State Historic Preservation Office; Fairbar Borough Commission on Historic Preservation; the Fairbanks North Star Fairbanks; the Tanana-Yukon Historical Society; U.S. Army Garrison A Wainwright; Tanana Chiefs Conference; Doyon, Limited; USARG Alasl Manager/Native Liaison; and Denakkanaaga, Inc.</u>	<u>· Borouş</u> laska-Fo	<u>gh; the C</u> ort	

b. If no letters were sent, explain why not. Attach "Section 106 Proceed

E. Impacts to Historic Properties

Directly to Findings Worksheet", if applicable N/A

- 4. Date "Finding of Effect" Letters sent <u>March 14, 2019 (see Attachement 2B</u> and project file) *Attach copies to this form*
- a. State "Finding of Effect" <u>The Alaska Department of Transportation and Public</u> <u>Facilities determined that the project activities will have no historic properties</u> <u>affected, as no NRHP eligible properties have been located within the project</u> <u>Area of Potential Effect.</u>
 - b. State any changes to consulting parties <u>N/A</u>
- 5. List responding consulting parties, comment date, and summarize:
 - Fairbanks North Star Borough Commission on Historic Preservationresponded via email on March 4, 2019 stating that they "made anunanimous motion to support the crossing, but felt no action was neededon their part" (see project file).
 - Alaska SHPO responded via email to the Initiation Letter sent on 1/28/2019 with no objection to the Study Area or level of identification (see project file).
 - <u>Alaska SHPO concurred with the no historic properties affected finding for</u> <u>the project activities on 4/4/2019 (Attachment 2C and project file).</u>
 - <u>USARG Alaska Cultural Resource Manager/Native Liaison responded to the</u> <u>Findings Letter via email on 3/28/2019 with no concerns (see project file).</u>
- -* \square 6. Are there any unresolved issues with consulting parties? If yes, the Section 106 process may not be complete, Statewide Cultural Resources Manager consultation is required. Attach consultation. 7. Date SHPO concurred with "Finding of Effect" April 4, 2019 (Attachment 2C) Attach copy to this form. 8. Is a National Register of Historic Places listed or eligible property in the Area \square of Potential Effect? \square 9. Will there be an adverse effect on a historic property? If yes, attach \square correspondence (including response from ACHP) and signed MOA. If yes, Programmatic Categorical Exclusions (PCEs) do not apply.
 - **10.** Summarize any effects to historic properties. *List affected sites (by AHRS number only) and any commitments or mitigative measures. Include any commitments or mitigative measures in Section V.*

SHPO concurred with the determination of "No Historic Properties Affected" (Attachment 2C). Because the highway interchange was removed from the project description and utility and overhead transmission line relocates were added to the project description, a PA UPDATE was completed on August 3, 2020 (Attachment 2D).

F. Wetland Impacts

1. Project affects wetlands as defined by the U.S. Army Corps of Engineers (USACE). *If yes, complete the remainder of this section and document public and agency coordination required per <u>E.O. 11990</u>, Protection of Wetlands. <i>If no, skip to Section G.*

<u>NO</u>

YES

F.	Wetl	and Impacts	<u>YES</u>	<u>NO</u>
	<u>th</u> 2.	The wetlands delineated in accordance with the " <u>Regional Supplement to</u> <u>the Corps of Engineers Wetland Delineation Manual: Alaska Region (Version</u> <u>0) Sept. 2007</u> "? stimated area of wetland involvement (acres):		
	4. E	stimated fill quantities (cubic yards):		
	5. E	stimated dredge quantities (cubic yards):		
		a USACE authorization anticipated?		
	NWP	Individual General Permit Other		
	7. W	Vetlands Finding Attach the following supporting documentation as appropriate: Avoidance and Minimization Checklist, and Mitigation Statement Wetlands Delineation. Jurisdictional Determination. Copies of public and resource agency letters received in response to the request for c	omment	<i>s</i> .
	a	• Are there practicable alternatives to the proposed construction in wetlands? <i>If yes, the project cannot be approved as proposed.</i>		
	b	• Does the project include all practicable measures to minimize harm to wetlands? <i>If no, the project cannot be approved as proposed.</i>		
	C	• Only practicable alternative: Based on the evaluation of avoidance and minimization alternatives, there are no practicable alternatives that would avoid the project's impacts on wetlands. The project includes all practicable measures to minimize harm to the affected wetlands as a result		

of construction. If no, the project cannot be approved as proposed.

8. Summarize the wetlands impacts and mitigation, if any. *Include any commitments or mitigative measures in <u>Section V</u>.*

According to National Wetland Inventory data (Accessed: May 21, 2019), the proposed project would not impact wetlands. The nearest wetlands are approximately 500 feet to the north of the existing right-of-way (see project file for National Wetlands Inventory map).

G.	Water Body Involvement		<u>N/A</u>	YES	<u>NO</u>	
	1.	Do	es the project affect the following:			
		a.	A water body.			\boxtimes
		b.	A navigable water body as defined by USCG, (i.e. Section 9)?	\boxtimes	*	
		c.	Waters of the U.S. as defined by the USACE, Section 404?	\boxtimes	*	
		d.	Navigable Waters of the U.S. as defined by the USACE (Section 10)?	\boxtimes	*	
		e.	Fish passage across a stream frequented by salmon or other fish (i.e. <u>Title</u> $16.05.841$)?	\bowtie		
		f.	A resident fish stream (Title 16.05.841)?	\boxtimes		
		g.	A cataloged anadromous fish stream, river or lake (i.e. <u>Title 16.05.871</u>)?	\boxtimes	-*	
		h.	A designated Wild and Scenic River or land adjacent to a Wild and Scenic River? <i>If yes, the Regional Environmental Manager should consult with the NEPA Program Manager to determine applicability of Section 4(f).</i>			\square

	2.	Proposed water body involvement: BridgeCulvertEmbankment Fill Relocation	\boxtimes		
	3.	Diversion Temporary Permanent Other Type of stream or river habitat impacted: Spawning Rearing Pool Riffle Undercut bank	\boxtimes		
	4.	Other Amount of fill below (cubic yards):			
		OHW <u>N/A</u> MHW <u>N/A</u> HTL <u>N/A</u>			
	5.	Summarize the water body impacts and mitigation, if any. <i>Include any commitmed measures in <u>Section V</u>.</i>			e
		The proposed project will not impact any water bodies (see project file for Nation Inventory map).	al Wet	lands	
H.	Fis	h and Wildlife	<u>N/A</u>	YES	<u>NO</u>
	1.	 Anadromous and resident fish habitat. Any activity or project that is conducted below the ordinary high water mark of an anadromous stream, river, or lake requires a Fish Habitat Permit. a. Database name(s) and date(s) queried: <u>https://www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG=main.inter</u> active (Accessed: June 25, 2018) 			
		b. Anadromous fish habitat present in project area.		*	\boxtimes
		c. Resident fish habitat present in project area		*	\boxtimes
		d. Adverse effect on spawning habitat.	\boxtimes	*	
		e. Adverse effect on rearing habitat.	\boxtimes	*	
		f. Adverse effect on migration corridors.	\boxtimes	*	
		g. Adverse effect on subsistence species.	\boxtimes	*	
	2.	Essential Fish Habitat (EFH). <i>EFH includes any anadromous stream used by any of the five species of Pacific salmon for migration, spawning or rearing, as well as other coastal, nearshore and offshore areas as designated by NMFS.</i>			
		 a. Database name(s) and date(s) queried: https://www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG=main.inter active (Accessed: June 25, 2018) b. EFH present in project area 			\boxtimes
		c. Project proposes construction in EFH. <i>If yes, describe EFH impacts in H.6.</i>	\boxtimes		
		d. Project may adversely affect EFH. If yes, attach EFH Assessment.	\boxtimes	*	
		e. Project includes conservation recommendations proposed by NMFS. <i>If NMFS conservation recommendations are not adopted, formal notification must be made to NMFS. Summarize the final conservation measures in H.6 and list in</i> <u>Section V</u> .			
	3.	Wildlife Resources:			
		a. Project is in area of high wildlife/vehicle accidents.			\boxtimes
		b. Project would bisect migration corridors.			\square
		c. Project would segment habitat.			\boxtimes

H. Fish and Wildlife

- **4.** <u>Bald and Golden Eagle Protection Act</u>. *If yes to any below, consult with USFWS and attach documentation of consultation.*
 - **a.** Eagle data source(s) and date(s) : https://ecos.fws.gov/ipac/ (Accessed: June 25, 2018)

	b.	Project visible from an eagle nesting tree?	-*	\boxtimes
	c.	Project within 330 feet of an eagle nesting tree?	*	\boxtimes
	d.	Project within 660 feet of an eagle nesting tree?	*	\boxtimes
	e.	Will the project require blasting or other activities that produce extreme loud noises within $1/2$ a mile from an active nest?	_*	\square
	f.	Is an <u>eagle permit</u> required?	*	\boxtimes
5.	Is t	he project consistent with the Migratory Bird Treaty Act?	\boxtimes	

6. Summarize fish and wildlife impacts and mitigation, including timing windows, if any. *Include any commitments or mitigative measures in <u>Section V</u>.*

There are no known occurrences of fish and wildlife documented directly within the project area, and the footprint of the project does not include suitable habitat. Suitable habitat for these species is limited to the lakes and ponds located in the industrial area to the southwest. An Aquatic Habitat Memo was prepared to further support these findings (see project file).

According to the IPAC report (see project file), the birds listed here are of particular concern either because they (1) occur on the U.S. Fish and Wildlife Service Birds of Conservation Concern (BCC) list or (2) otherwise warrant special attention due to vulnerability of the species. The following species were identified (based on liberal estimates) as possibly occurring within the 10-square-kilometer grid cells that intersect the project area, although are not anticipated to be present in the project area.

a. BCC Rangewide (peak breeding season): American Golden Plover (May 20 to August 15), Hudsonian Godwit (May 15 to July 31), Lesser Yellowlegs (May 1 to August 15), Olive-sided Flycatcher (May 20 to August 31), Whimbrel (May 10 to August 20)

b. Non-BCC Vulnerable: Bald Eagle, Golden Eagle

Standard conservation measures for transportation activities are recommended to avoid impacts to migratory birds that incidentally may breed in the area (e.g., survey tall grasses for nesting sites). All vegetation removal and trimming and grading of vegetated areas will be scheduled outside of the peak bird-breeding season to the maximum extent practicable. No mechanized vegetation clearing will occur from May 1 to July 15.

I.	Tł	reatened and Endangered Species (T&E)	YES	<u>NO</u>
		Database name(s) and date(s) queried: https://ecos.fws.gov/ipac/ (Accessed: June 20, 2018) (see project file for IPAC report) Listed threatened or endangered species present in the project area.		\boxtimes
	3.	Threatened or endangered species migrate through the project area.		\bowtie
	4.	Designated critical habitat in the project area.		\bowtie
	5.	Proposed or Candidate species present in project area.		\boxtimes
	6.	What is the effect determination for the project? Select one.		
		a. Project has no effect on listed or proposed T&E species or designated critical habitat.	\boxtimes	

I. Threatened and Endangered Species (T&E)

- **b.** Project is not likely to adversely affect a listed or proposed T&E species or designated critical habitat. Informal Section 7 consultation is required. Attach consultation documentation, including concurrence from the Federal agency, to this form.
- c. Project is likely to adversely affect a listed or proposed T&E species or designated critical habitat. If yes, consult the NEPA Program Manager.
- 7. Summarize the findings of the consultation, conferencing, biological evaluation, or biological assessment and the opinion of the agency with jurisdiction, or state why no coordination was conducted. Include any commitments or mitigative measures in Section V. There are no T&E species or critical habitat in the proposed project area. An Aquatic Habitat Memo was prepared to further support these findings (see project file).

J. Invasive Species

- 1. Database name(s) and date(s) queried: http://accs.uaa.alaska.edu/invasivespecies/non-native-plants/ (Accessed: June 20, 2018).
- 2. Does the project include all practicable measures to minimize the introduction or spread invasive species, making the project consistent with E.O. 13112 (Invasive Species)? If yes, list measures in J.3.
- 3. Summarize invasive species impacts and minimization measures, if any. Include any commitments or mitigative measures in Section V.

Among the 16 non-native species present in the project vicinity, 5 have an invasiveness rank greater than 70 and may pose an invasive threat due to the high propensity for spreading to areas outside the project area (Alaska Exotic Plant Information Clearinghouse). Although the documented density and extent of these populations are limited, cost-efficient mitigation measures are recommended to reduce the risk of transport of propagules off-site; measures such as burying, grubbing and minimizing disturbance. Preventative measures to reduce the risk of introducing additional species include using certified weed-free seed mixes for revegetation.

Below is a list of the non-native species in the vicinity and the associated U.S. Department of Agriculture invasiveness rank:

Lepidium densiflorum Schrad. (common pepperweed - 25), Plantago major (common plantain - 44), Hieracium umbellatum (narrowleaf hawkweed - 51), Crepis tectorum (narrowleaf hawksbeard - 56), Trifolium hybridum (alsike clover - 57), Taraxacum officinale (common dandelion - 58), Elymus repens (quackgrass - 59), Bromus inermis (smooth brome - 62), Hordeum jubatum (foxtail barley -63), Medicago sativa (yellow alfalfa - 64), Linaria vulgaris (butter and eggs - 69), Sonchus arvensis (field sowthistle - 73), Vicia cracca (bird vetch - 73), Caragana arborescens (Siberian peashrub - 74), Prunus padus (European bird cherry - 74), and Melilotus albus (white sweetclover - 81).

K.	<u>Co</u>	ntaminated Sites	<u>YES</u>	<u>NO</u>
		Database name(s) and date(s) queried: https://dec.alaska.gov/spar/csp.aspx (Accessed: September 10, 2020) There are known or potentially contaminated sites within or adjacent to the existing and/or proposed ROW. <i>If yes, attach ADEC coordination</i> <i>documentation and summarize below in IV.K.4.</i>	*	
	3.	There are contaminated sites within 1,500 feet of where excavation dewatering is anticipated? <i>If yes, attach ADEC coordination correspondence and summarize below in IV.K.4.</i>		

YES NO

7*

__*

YES NO

 \boxtimes

K. Contaminated Sites

4. Summarize the contaminated site impacts and mitigation, if any. *Include any commitments or mitigative measure in Section IV*.

There are no contaminated sites documented in the area of the proposed project (see project file for Alaska DEC contaminated sites map).

L.	Air	· Quality (Conformity)	<u>N/A</u>	YES	<u>NO</u>
	1.	The project is located in an air quality maintenance area or nonattainment area (CO or PM-10 or PM-2.5). <i>If yes, indicate CO</i> \boxtimes <i>or PM-10</i> \square <i>or PM-2.5</i> \boxtimes , <i>and complete the remainder of this section. If no, skip to Section M.</i>			
	2.	The project is exempt from an air quality analysis per <u>40 CFR 93.126</u> (Table 2 and Exempt Projects). <i>If no, a project-level air quality conformity determination is required for CO nonattainment and maintenance areas, and a qualitative project-level analysis is required for both PM-2.5 and PM-10 nonattainment and maintenance areas.</i>			
	3.	The project is included in a conforming Long Range Transportation Plan (LRTP) and Transportation Improvement Program (TIP).		\square	
		a . List dates of FHWA/FTA conformity determination: January 30, 2019			
	4.	Have there been a significant change in the scope or the design concept as described in the most recent conforming TIP and LRTP? <i>If yes, describe changes in L.8. In addition, the project must satisfy the conformity rule's requirements for projects not from a plan and TIP, or the plan and TIP must be modified to incorporate the revised project (including a new conformity analysis).</i>			
	5.	A CO project-level analysis was completed meeting the requirements of Section 93.123 of the conformity rule. The results satisfy the requirements of Section 93.116(a) for all areas or $93.116(b)$ for nonattainment areas. Attach a copy of the analysis.		*	
	6.	A PM-2.5 project-level air quality analysis was completed meeting the requirements of <u>Section 93.123</u> of the conformity rule. The results satisfy the requirements of <u>Section 93.116</u> . <i>Attach a copy of the analysis</i> .		_*	\square
	7.	A PM-10 project-level air quality analysis was completed meeting the requirements of <u>Section 93.123</u> of the conformity rule. The results satisfy the requirements of <u>Section 93.116</u> . <i>Attach a copy of the analysis</i> .	\boxtimes	*	
	~		-		

8. Summarize air quality impacts, mitigation, and agency coordination, if any. *Include any commitments or mitigative measures in <u>Section V</u>.*

The project is within the boundaries of a Non-Attainment area for PM-2.5 and a Maintenance Area for Carbon Monoxide (Attachment 3A). The 2018-2021 STIP includes the Railroad Grade Separated Facility project (#28069) and the non-motorized pathway (#2130). Therefore, the requirements for the Transportation Conformity Rule are met (Attachment 3B).

According to 40 CFR 93126, railroad/highway crossing improvements are exempt from the interagency coordination requirement to determine conformance with adopted air quality plans (Attachment 3C). Pedestrian facilities are also exempt. As for project level conformity, the project does not include any signalized intersections, and is therefore exempt from CO hotspot analysis.

M. <u>Floodplain Impacts (23 CFR 650, Subpart A)</u>	<u>YES</u>	<u>NO</u>
 Project encroaches into the base (100 year) flood plain in fresh or marine waters. Identify floodplain map source and date : <u>https://msc.fema.gov/portal/search (Accessed: July 27, 2020)</u> 	⊠*	
If yes, attach documentation of public involvement conducted per <u>E.O. 11988</u> and <u>23 CFR 650.109</u> . Consult with the regional or Statewide Hydraulics/Hydrology expert and attach the required location hydraulic study developed per <u>23 CFR</u> <u>650.111</u> . Answer questions M.1.a through d.		
If no, skip to M.2.		
a. Is there a longitudinal encroachment into the 100-year floodplain?	*	\square
b. Is there significant encroachment as defined by <u>23 CFR 650.105(q)</u> ? If yes, attach a copy of FHWA's finding required by 23 CFR 650.115.	*	\boxtimes
c. Project encroaches into a regulatory floodway.	*	\square
d. The proposed action would increase the base flood elevation one-foot or greater.	*	\square
2. Project conforms to local flood hazard requirements.	\boxtimes	
3. Project is consistent with <u>E.O. 11988</u> (Floodplain Protection). <i>If no, the project cannot be approved as proposed.</i>	\square	

4. Summarize floodplain impacts and mitigation, if any. *Include any commitments or mitigative measures in <u>Section V</u>.*

The FEMA Flood Insurance Rate Maps, dated 03/17/2014, shows most of the project is in Zone X, an area with a one-percent annual chance or greater flood hazard by a levee system (Attachments 4A and 4B). There is a small portion of the project area on the south side of the Richardson Highway that falls within Special Flood Hazard area 'Zone A' (Attachments 4A and 4B). The Special Flood Hazard area 'Zone A' (Attachments 4A and 4B). The Special Flood Hazard area Zone A is an area where no base flood elevations have been determined; the risks associated with this project are low (Location Hydraulic Study is Attachment 4C). Notification of potential floodplain encroachment included in January 2019 Online Public Notice (Attachment 7). Measures to minimize flood plain impacts include maintaining the existing flow distribution and minimizing the footprint of the project to the extent practicable. Erosion and sediment control measures will also be implemented during construction. The project will not involve significant encroachments and should not support incompatible floodplain development. Proposed work will improve water conveyance and no adverse flood plain impacts are anticipated.

N. Noise Impacts (23 CFR 772)

- 1. Does the project involve any of the following? *If yes, complete N.2. If no, a noise analysis is not required. Skip to section O.*
 - **a.** Construction of highway on a new location.
 - **b.** Substantial alteration in vertical or horizontal alignment as defined in <u>23</u> <u>CFR 772.5</u>.
 - c. An increase in the number of through lanes.
 - d. Addition of an auxiliary lane (except a turn lane).
 - e. Addition or relocation of interchange lanes or ramps added to a quadrant to complete an existing partial interchange.
 - **f.** Restriping existing pavement for the purpose of adding a through-traffic lane or an auxiliary lane.
 - g. Addition of a new or substantial alteration of a weigh station, rest stop, ride-

share lot or toll plaza.

2. Identify below which category of land uses are adjacent: A noise analysis is required if any lands in Categories A through E are identified, and the response to N.1 is 'yes'.

Category A: Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.

Category B: Residential. This includes undeveloped lands permitted for this category.

Category C (exterior): Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, daycare centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings. *This includes undeveloped lands permitted for this category*.

Category D (interior): Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.

Category E: Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not listed above. *This includes undeveloped lands permitted for this category*.

- 3. Does the noise analysis identify a noise impact? If yes, explain in N.4
- 4. Summarize the findings of the attached noise analysis and noise abatement worksheet, if applicable: The Richardson Highway MP 359 Railroad Grade Separated Facility project does not meet the federal and state threshold requirements for preparing a quantitative highway noise impact and mitigation analysis. Vertical alteration did not meet criteria described in the DOT&PF Noise Policy (2018) for further noise analysis. Attachment 5 presents data to support the conclusion that a noise analysis is not warranted.

This determination was made for the grade-separated railroad overpass. The Activity Categories present in the vicinity of the project area include both B (3,600 feet to 4,350 feet) and C (1,800 feet).

0.	Wa	Water Quality Impacts		YES	<u>NO</u>
	1.	Project would involve a public or private drinking water source. <i>If yes, explain in O.7</i>			\boxtimes
	2.	Project would result in a discharge of storm water to a Water of the U.S. (per $\underline{40}$ <u>CFR 230.3(s)</u>)			\boxtimes
	3.	Project would discharge storm water into or affect an ADEC designated Impaired Waterbody. <i>If any of the Impaired Waterbodies have an approved or</i> <i>established Total Maximum Daily Load, describe project impacts in 0.7</i>			
		a. List name(s), location(s), and pollutant(s) causing impairment:			
		<u>N/A</u>			
4	F	Estimate the acreage of ground-disturbing activities that will result from the project? Approximately 50 acres.			

12 of 16 Project Name: Richardson Highway MP 359 Railroad Grade Separated Facility State Project Number: Z607340000 /Federal Project Number: A024033 \square

0.	. <u>Water Quality Impacts</u>		<u>N/A</u>	YES	<u>NO</u>
	5.	Is there a Municipal Separate Storm Sewer System (MS4) APDES permit, or will runoff be mixed with discharges from an APDES permitted industrial facility?		\square	
		a. If yes, list APDES permit number and type. <u>AKS053406</u>			
	6.	Would the project discharge storm water to a water body within a national park or state park; a national or state wildlife refuge?			\boxtimes
	7	Symmetry the water available impression and mitigation if any had do not a commit			

7. Summarize the water quality impacts and mitigation, if any. *Include any commitments or mitigative measures in <u>Section V</u>.*

The project is located within the Fairbanks MS4 boundary, but there are no MS4 storm water conveyances in the project area and no discharges to MS4 or Waters of the U.S. To aid in storm water management, CGP coverage will be obtained and a SWPPP with BMPs will be developed.

Р. <u>Сс</u>	. <u>Construction Impacts</u>			<u>NO</u>
1	. There will be temporary degradation of water quality.			\boxtimes
2	There will be a temporary stream diversion.			\boxtimes
3	. There will be temporary degradation of air quality.		\boxtimes	
4	. There will be temporary delays and detours of traffic.		\boxtimes	
5	. There will be temporary impacts on businesses.			\boxtimes
6	. There will be temporary noise impacts.		\boxtimes	
7	. There will be other construction impacts (e.g. TCEs/TCPs, utility relocates, staging areas, etc.).		\square	

8. Summarize construction impacts and mitigation for each 'yes' above. *Include any commitments or mitigative measures in <u>Section V</u>.*

Air quality: Temporary degradation of air quality may occur from the use of heavy equipment through emissions and airborne particulates. To mitigate for air quality, watering of dust-prone areas during construction will minimize impacts.

Access: Traffic access will be maintained during construction; however, there could be temporary access delays from flagging operations.

Noise: Minor and temporary increase of noise levels would occur due to operation of construction equipment. The use of construction equipment producing excessive noise (e.g., pile driver) will conform to local noise ordinances.

Utility relocates: There are 2 transmission line crossings and a communication line that will need to be adjusted or relocated.

Q. Section 4(f)/6(f) YES NO 1. Section 4(f) (23 CFR 774) a. Was detailed Section 4(f) resource identification conducted for this project, other than that required for Section 106 compliance? *If no, attach consultation with the NEPA Program Manager stating further Section 4(f) resource identification was not required.*b. Does a Section 4(f) resource exist within the project area; or is the project adjacent to a Section 4(f) resource? *If yes, attach consultation with the NEPA Program Manager to determine applicability of Section 4(f). If no, skip to Q.2.*

Ç	<u>)</u> . <u>s</u>	Sect	ion 4(f)/6(f)		<u>YES</u>	<u>NO</u>
		c.	Does an exception listed in <u>23 CFR 774.13</u> apply to this project? <i>If yes, attach consultation with the NEPA Program Manager, and documentation from the officia with jurisdiction, if required.</i>	al	*	
		d.	Does the project result in the "use" of a Section 4(f) property? "Use" includes a permanent incorporation of land, adverse temporary occupancy, or constructive us no, attach consultation with the NEPA Program Manager and skip to Q.2.	e. If		*
		e.	Has a de minimis impact finding been prepared for the project? If yes, attach the find	ıding.	*	
		f.	Has a Programmatic Section 4(f) Evaluation been prepared for the project? <i>If yes, a the evaluation.</i>	ittach	*	
		g.	Has an Individual Section 4(f) Evaluation been prepared for the project? If yes, attache evaluation.	ach	*	
	2.	S	ection 6(f) (36 CFR 59)			
		a.	Were funds from the Land and Water Conservation Fund Act (LWCFA) used for improvement to a property that will be affected by this project?			\square
		b.	Is the use of the property receiving LWCFA funds a "conversion of use" per Section 6(f) of the LWCFA? <i>Attach the correspondence received from the ADNR 6(f) Gran Administrator</i> .			
	3.		Summarize Section $4(f)/6(f)$ involvement, if any: There are no $4(f)/6(f)$ properties in the proposed project area.			
III.		Per	rmits and Authorizations	<u>'A</u>	<u>YES</u>	<u>NO</u>
	1.		ACE, Section 404/10 Includes Abbreviated Permit Process, Nationwide mit, and General Permit			\square
	2.	Coa	st Guard, Section 9			\boxtimes
	3.	AD	F&G Fish Habitat Permit (<u>Title 16.05.871</u> and <u>Title 16.05.841</u>)			\boxtimes
	4.	Floo	od Hazard		\boxtimes	
	5.	AD	EC Non-domestic Wastewater Plan Approval			\boxtimes
	6.	AD	EC 401			\boxtimes
	7.	AD	EC APDES		\boxtimes	
	8.	Noi	se			\boxtimes
	9.	Eag	le Permit			\boxtimes
	10.	.Oth	er. If yes, list below.			
		See pla	e the project file for documentation regarding the non-domestic wastewater n.			
IV.		Co	mments and Coordination <u>N/</u>	/ <u>A</u>	<u>YES</u>	<u>NO</u>
	1.		lic/agency involvement for project. <i>Required if protected resources are olved.</i>		\square	

2. Public Meetings. Date(s): <u>Online Open House December 19, 2018- January 25,</u> 2019 (Attachment 6) http://dot.alaska.gov/nreg.rich369/	
3. Newspaper ads. <i>Attach certified affidavit of publication as an appendix.</i> Name of newspaper and date: <u>Fairbanks Daily News-Miner December 26, 2018,</u> January 6, 2019 and January 16, 2019 (Attachment 7)	
 4. Alaska Online Public Notice date: January 2, 2019 (Attachment 8) 5. Agency scoping letters. Date sent: February 8, 2019 (Attachment 9A) 	\boxtimes
 6. Agency scoping meeting. Date of meeting: <u>N/A</u> 7. Field review. Date: <u>N/A</u> 	

8. Summarize comments and coordination efforts for this project. Discuss pertinent issues raised. *Attach correspondence that demonstrates coordination and that there are no unresolved issues.*

Comments were received in response to the agency scoping letters and responses were sent (Attachment 9B). There are no unresolved issues.

A meeting was held to coordinate with stakeholders (Attachments 10A and 10B). Comments were submitted by stakeholders and members of the public (Attachment 10C). There are no unresolved issues.

V. Environmental Commitments and Mitigation Measures

List all environmental commitments and mitigation measures included in the project.

• No mechanical vegetation clearing during the USFWS recommended nesting window of May 1st to July 15th.

Mitigation Measures:

• Cost-efficient mitigation measures (e.g., wash equipment) are recommended to minimize the transport of propagules off-site. Prevention measures to reduce the risk of introducing additional species include using certified weed-free seed mixes for revegetation and washing equipment.

VI.	Environmental Documentation Approval	<u>N/A</u>	<u>YES</u>	<u>NO</u>
1.	Do any unusual circumstances exist, as described in <u>23 CFR 771.117(b)</u> ? If yes, attach consultation with the NEPA Program Manager demonstrating that a CE is appropriate.		*	\square
2.	The project meets the criteria of one of the following <u>DOT&PF Programmatic</u> <u>Approvals</u> authorized in the Nov. 13, 2017 " <u>Chief Engineer Directive –</u> <u>Programmatic Categorical Exclusions</u> ".		\square	
	 If yes, select the appropriate Programmatic Approval below, and the CE documentation form may be approved by the Regional Environmental Manager. If no, the CE documentation form must be approved by a NEPA Program Manager. 			
	a. Programmatic Approval 1			
	b. Programmatic Approval 2		\square	
	c. Programmatic Approval 3			

VII. **Environmental Documentation Approval Signatures**

Prepared by:

. McKinney

Date:

Date:

Date:

09/14/2020

09.15.2020

9/21/2020

[Signature] Environmental Impact Analyst

Holly McKinney

[Print Name] Environmental Impact Analyst

Reviewed by:

Colleen ach [Signature] Engineering Manager

Colleen Ackiss [Print Name] Engineering Manager

Programmatic CE

Approved by:

Brett Nelson Digitally signed by Brett Nelson DN: cn=Brett Nelson, o=DOT&PF, ou=Northern Region, email=brett.nelson@alaska.gov, c=US Date: 2020.09.21 14:52:11 -0810'

[Signature] Regional Environmental Manager

Brett Nelson

[Print Name] Regional Environmental Manager

Non-Programmatic CE

Approval Recommended by:

Date:

[Signature] Regional Environmental Manager

[Print Name] Regional Environmental Manager

Approved by:

Date:

[Signature] NEPA Program Manager

[Print Name] NEPA Program Manager

16 of 16 Project Name: Richardson Highway MP 359 Railroad Grade Separated Facility State Project Number: Z607340000 /Federal Project Number: A024033

CE Documentation Form November 2017

Attachment 1 Figures

1A - Study Area Map 1B – Project Overview Map

- DOT Milepost
- – Railroad

Figure 1A Study Area Richardson Highway Richardson Highway MP 359, Fairbanks, Alaska

not to scale

not to scale

SOUTH

Attachment 2 Section 106 Documents

- 2A Section 106 Initiation
- 2B Section 106 Findings
- 2C-Section 106 Concurrence
- 2D- PA Update

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Ms. Judith Bittner State Historic Preservation Officer Alaska Office of History and Archaeology 550 W. 7th Avenue, Suite 1310 Anchorage, Alaska 99501-3565

Dear Ms. Bittner:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

For purposes of the National Historic Preservation Act, the DOT&PF, acting as a Federal agency, is initiating this consultation with you to assist us in identifying historic properties that may be affected by the proposed project. Consultation is being conducted in accordance with the 2017 *First Amended Programmatic Agreement...for the Federal-Aid Highway Program in Alaska.*

"Keep Alaska Moving through service and infrastructure."

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1:	AHRS	Sites	within	the S	Study	Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at <u>thomas.gamza@alaska.gov</u>.

We request your input on our proposal so that we can incorporate your concerns into project development. Your timely response will greatly assist our compliance efforts and the preparation of any required environmental documentation. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

- Road
- -+ Railroad
- Study Area
- Parcel
- FAI-01752 AMT&TL Route

Figure 2 Study Area Richardson Highway Richardson Highway MP 359, Fairbanks, Alaska

0

DRAFT 1/15/2019

0.125 0.25 Miles 1 inch = 0.25 mile

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Melissa Kellner, Liaison FNSB-Commission on Historic Preservation Fairbanks-North Star Borough-Borough Administrative Center 809 Pioneer Road Fairbanks, Alaska 99701

Dear Ms. Kellner:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility	
Number			Determination?	
FAI-01752	Alaska Military	Historic Euroamerican site. The portion of	Segment within	
	Highway Telephone	the line shown on Fort Wainwright lands	Study Area not	
	and Telegraph Line	was not located during a 2015 survey.	located during	
S Merceloui			Ft. Wainwright	
			Inventory.	
FAI-01778	Building 3483:	Rectangular building with garage bay doors	None-Does not	
	Vehicle Wash	on either end for entering and exiting	meet Criteria for	
	Facility	vehicles and separate personnel entrances.	Evaluation,	
		Built in the 1990's or later.	Criteria G or 50	
			year threshold.	
FAI-02137	Sign 3	Richardson Gate sign. A wood sign	Determined not	
		embossed "U.S. Army Fort Wainwright" set	eligible	
		in rough-cut stone with an aluminum cap.	5/4/2012.	
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway	Segment part of	
		System. Portion of highway within the Study	Interstate	
		area is not Treated as Eligible.	Highway Route	
			(2005) exempt	
			from Section	
			106 review.	

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

The Honorable Jim Matherly, Mayor City of Fairbanks 800 Cushman Avenue Fairbanks, Alaska 99701

Dear Mayor Matherly:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

The Honorable Bryce J. Ward, Mayor Fairbanks-North Star Borough P.O. Box 71267 Fairbanks, Alaska 99707-1267

Dear Mayor Ward:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Ron Inouye, President Tanana-Yukon Historical Society PO Box 71336 Fairbanks, Alaska 99707-1336

Dear Mr. Inouye:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Victor Joseph, President/Chairman Tanana Chiefs Conference 122 First Avenue, Suite 600 Fairbanks, Alaska 99701

Dear Mr. Joseph:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at <u>thomas.gamza@alaska.gov</u>.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Aaron Schutt, President Doyon, Limited 1 Doyon Place Fairbanks, Alaska 99701

Dear Mr. Schutt:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at <u>thomas.gamza@alaska.gov</u>.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Sharon McConnell, Executive Director Denakkanaaga 101 Dunkle Street, Suite 135 Fairbanks, Alaska 99701

Dear Ms. McConnell:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination ?
FAI-01752	Alaska Military	Historic Euroamerican site. The portion of	Segment within
	Highway Telephone	the line shown on Fort Wainwright lands	Study Area not
	and Telegraph Line	was not located during a 2015 survey.	located during
			Ft. Wainwright
			Inventory.
FAI-01778	Building 3483:	Rectangular building with garage bay doors	None-Does not
	Vehicle Wash	on either end for entering and exiting	meet Criteria for
	Facility	vehicles and separate personnel entrances.	Evaluation,
		Built in the 1990's or later.	Criteria G or 50
			year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign	Determined not
		embossed "U.S. Army Fort Wainwright" set	eligible
		in rough-cut stone with an aluminum cap.	5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway	Segment part of
		System. Portion of highway within the Study	Interstate
		area is not Treated as Eligible.	Highway Route
			(2005) exempt
			from Section
			106 review.

Table 1: AHRS Sites within the Study Area

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at <u>thomas.gamza@alaska.gov</u>.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 Consultation Initiation

January 18, 2019

Elizabeth Cook USAG FWA Cultural Resources Manager/Native Liaison Directorate of Public Works IMFW-PWE(COOK) 1060 Gaffney Rd #4500 Fort Wainwright, AK 99703-4500

Dear Ms. Cook:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the near MP 359 of the Richardson Highway. The project location is legally described T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

For purposes of the National Historic Preservation Act, the DOT&PF, acting as a Federal agency, is initiating this consultation with you to assist us in identifying historic properties that may be affected by the proposed project. Consultation is being conducted in accordance with the 2017 *First Amended Programmatic Agreement...for the Federal-Aid Highway Program in Alaska*.

"Keep Alaska Moving through service and infrastructure."

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/ Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Study Area

The proposed Study Area includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 2).

The Area of Potential Effect (APE) will be defined after comments are received from your agency and other consulting parties.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019 which resulted in the identification of four (4) AHRS sites within the Study Area which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination?
FAI-01752	Alaska Military Highway Telephone and Telegraph Line	Historic Euroamerican site. The portion of the line shown on Fort Wainwright lands was not located during a 2015 survey.	Segment within Study Area not located during Ft. Wainwright Inventory.
FAI-01778	Building 3483: Vehicle Wash Facility	Rectangular building with garage bay doors on either end for entering and exiting vehicles and separate personnel entrances. Built in the 1990's or later.	None-Does not meet Criteria for Evaluation, Criteria G or 50 year threshold.
FAI-02137	Sign 3	Richardson Gate sign. A wood sign embossed "U.S. Army Fort Wainwright" set in rough-cut stone with an aluminum cap.	Determined not eligible 5/4/2012.
FAI-02328	Richardson Highway	Historic Euroamerican Interstate Highway System. Portion of highway within the Study area is not Treated as Eligible.	Segment part of Interstate Highway Route (2005) exempt from Section

Table 1: AHRS Sites within the Study Area

Richardson Highway MP 359 Grade Separation State/Federal Project No. Z607340000/0A24033 Consultation Initiation

Site Name	Site Comments	Eligibility Determination?
		106 review.

Under the Alaska Historic Roads Programmatic Agreement Interim Guidance, a group of Alaska roads has been identified which are being treated as eligible for the NRHP. The Richardson Highway (FAI-02328/XBD00409) is one of these roads but the segment currently being considered for eligibility (Milepoint 132.491-269.312) is not within this project Study Area.

Consultation Efforts

The following consulting parties are being contacted regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you have questions or comments related to this proposed project, I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at <u>thomas.gamza@alaska.gov</u>.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location & Vicinity Figure 2. Study Area

Electronic cc w/ enclosures:

Colleen Ackiss, P.E. DOT&PF Northern Region, Project Manager Brett Nelson, DOT&PF Northern Region, Regional Environmental Manager Kathy Price, DOT&PF, Statewide Cultural Resources Manager Alan Skinner, DOT&PF Northern Region, Design Engineer

3

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected ATTENTION: This finding contains one (1) DOE

March 14, 2019

Ms. Judith E. Bittner State Historic Preservation Officer Alaska Office of History and Archaeology 550 W. 7th Avenue, Suite 1310 Anchorage, Alaska 99501-3565

Dear Ms. Bittner:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National

"Keep Alaska Moving through service and infrastructure."

Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway rightof-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

24

Please direct your concurrence or comments to me at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

- DOT Mileposts
- Road
- -+ Railroad
- C Area of Potential Effect (APE)
- FAI-01752 AMHT&TL Route

Figure 1 Location, Vicinity & Area of Potential Effect (APE) with AHRS Site Locations Richardson Highway MP 359, Fairbanks, Alaska

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Victor Joseph, President/Chairman Tanana Chiefs Conference 122 First Avenue, Suite 600 Fairbanks, Alaska 99701

Dear Mr. Joseph:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

d

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Aaron Schutt, President Doyon, Limited 1 Doyon Place Fairbanks, Alaska 99701

Dear Mr. Schutt:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

2

Richardson Highway MP 359 Grade Separation Crossing State/Federal Project No. Z607340000/0A24033 No Historic Properties Affected

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site Number	Site Name	Site Comments	Eligibility Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

Determination of Eligibility

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

4

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Sharon McConnell, Executive Director Denakkanaaga 101 Dunkle Street, Suite 135 Fairbanks, Alaska 99701

Dear Ms. McConnell:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

2

Richardson Highway MP 359 Grade Separation Crossing State/Federal Project No. Z607340000/0A24033 No Historic Properties Affected

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

4

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot,alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

The Honorable Jim Matherly, Mayor City of Fairbanks 800 Cushman Avenue Fairbanks, Alaska 99701

Dear Mayor Matherly:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway rightof-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility Determination
Number FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

4

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures:

Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

The Honorable Bryce J. Ward, Mayor Fairbanks-North Star Borough P.O. Box 71267 Fairbanks, Alaska 99707-1267

Dear Mayor Ward:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway rightof-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

Table 1: AHRS Sites within the APE Image: Comparison of the second s

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Melissa Kellner, Liaison FNSB-Commission on Historic Preservation Fairbanks-North Star Borough-Borough Administrative Center 809 Pioneer Road Fairbanks, Alaska 99701

Dear Ms. Kellner:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

"Keep Alaska Moving through service and infrastructure."

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway rightof-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures: Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Ron Inouye, President Tanana-Yukon Historical Society PO Box 71336 Fairbanks, Alaska 99707-1336

Dear Mr. Inouye:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway rightof-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures:

Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Northern Region Design and Engineering Services

> 2301 Peger Road Fairbanks, Alaska 99709-5316 Main: 907-451-2273 Toll free: 800-451-2363 Dot.alaska.gov

In Reply Refer To: Richardson Highway MP 359 Railroad Grade Separated Crossing State/Federal Project Number: Z607340000/0A24033 No Historic Properties Affected

March 14, 2019

Elizabeth Cook USAG FWA Cultural Resources Manager/Native Liaison Directorate of Public Works IMFW-PWE(COOK) 1060 Gaffney Rd #4500 Fort Wainwright, AK 99703-4500

Dear Ms. Cook:

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration (FHWA) under 23 U.S.C. 327, and is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing near MP 359 of the Richardson Highway. The project location is legally described as T.001S, R.001E Section 19, and T.001S, R.001W, Section 24, Fairbanks Meridian, USGS Quadrangle Fairbanks D-2 and is shown on Figure 1.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Consultation for this project is being conducted in accordance with the 2017 *First Amended Programmatic Agreement... for the Federal-Aid Highway Program in Alaska.* The DOT&PF, acting as a Federal agency, finds that no historic properties would be affected by the proposed project pursuant to 36 CFR 800.4(d)(1), implementing regulations of Section 106 of the National

"Keep Alaska Moving through service and infrastructure."

Historic Preservation Act. This submission provides documentation in support of this finding, as required at 36 CFR 800.11(d).

Project Description

The DOT&PF is proposing to construct an interchange at the Richardson Highway/Old Richardson Highway intersection and a railroad grade separation at the existing railroad crossing to the east. Bridges will be constructed for the interchange and railroad grade separation. The interchange will be designed to accommodate future access needs for Ft. Wainwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway. Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential separated pathway.

Area of Potential Effect (APE)

The APE includes the direct footprint of the new interchange and new railroad grade separation, associated new roadways, roadway realignments, the entire width of Richardson Highway right-of-way from approximately 1650 feet east of MP 359 to 2600 feet west of MP 360, and the entire width of right-of-way of the Old Richardson Highway from its intersection with the Richardson Highway to 600 feet west of the Lakeview Drive/Old Richardson Highway intersection (Figure 1). Potential visual effects created by the project ground disturbing activities on adjacent potential historic properties/AHRS sites were considered when determining the boundaries of the APE. None were identified.

Identification Efforts

Initial identification efforts consisted of a review of the Office of History Archaeology's (OHA) Alaska Heritage Resources Survey (AHRS) database on January 16, 2019. A March 13, 2019 review of the AHRS resulted in the identification of two (2) AHRS sites within the APE which are shown in Table 1 below:

Site	Site Name	Site Comments	Eligibility
Number			Determination
FAI-01752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Built in 1942-43 in support of the U.S. Military during WWII providing a secure dedicated set of communication lines. It extended from Edmonton, Alberta, Canada running adjacent to the Alaska Highway and continuing up the Richardson Highway to Fairbanks, Alaska.	Segment potentially within the APE MP 358 & 362 on Fort Wainwright lands was not located during a 2015 survey. Segment determined not eligible pending SHPO concurrence.
FAI-02328	Richardson Highway	357 mile road that extends from Valdez to Fairbanks. The portion of highway within the APE is not a part of the road considered eligible for the NRHP under Criterion A it is part of the Interstate Highway System.	Segment part of Interstate Highway Route (2005) exempt from Section 106 review and does not require a Determination of Eligibility (DOE).

Determination of Eligibility

FAI-01752- Alaska Military Highway Telephone & Telegraph Line (AMHT&TL)

Linear Feature; Built 1942-43. The AMHT&TL was built in fifteen months mainly by civilian construction workers; a small detachment of the 255th Signal Corps also worked on the line which ran from Edmonton, Alberta, Canada and Fairbanks, Alaska along the Alaska Highway corridor. It was built in response to increased need of secure military lines during World War II and included civilian lines as well. It consisted of seven telephone channels and fourteen telegraph-teletype lines. When the line reached Fairbanks it was connected to new and existing telephone and telegraph lines and ran along the Alaska Railroad corridor.

No portions of the AMHT&TL were identified during the 2015 NLURA Interior Gas Utility Survey inventory or any of the U.S. Army Garrison Alaska-Fort Wainwright facilities inventories 2004-2015. The original line was an overhead powerline that consisted of ten-pin cross arms on local timber poles. Updates to utilities over the past 75 years include capacity upgrades, fiber-optics and relocation of some utilities both above and underground. The current power poles are located on the south southwestern side of the Richardson Highway and not in the corridor adjacent to Ft. Wainwright as shown on the AHRS. Current installations consist of modern pole top style on pressure-treated wooden poles.

FAI-01752 is no longer extant between MP 358 & 362 and the Criteria for Evaluation (36CFR§60.4) cannot be applied to this segment of the AMHT&TL as it has no integrity. Therefore, the DOT&PF has determined that this portion of the AMHT&TL is not eligible for the National Register of Historic Places (NRHP) and seeks the SHPO's concurrence.

Finding of Effect

Overall, the DOT&PF has determined that the project activities will not have an effect on historic properties as no NRHP eligible properties have been located within the project APE and seeks the Alaska SHPO concurrence with a **no historic properties affected** finding for the project activities as presented.

Consultation Efforts

The following consulting parties were sent Initiation of Consultation Letters on January 18, 2019 regarding this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

The Alaska SHPO office responded to the letter via email on January 28, 2019 stating that they had no objection to the Study Area/APE. The Fairbanks North Star Borough Commission on Historic Preservation responded via email on March 4, 2019 stating that they "made an unanimous motion to support the crossing, but felt no action was needed on their part". No other responses were received.

The following parties will be receiving Findings Letters for this project: the State Historic Preservation Officer (SHPO); The Fairbanks North Star Borough; the Fairbanks North Star

Borough Commission on Historic Preservation; the Tanana-Yukon Historical Society, U.S. Army Garrison Alaska-Fort Wainwright, Tanana Chiefs Conference; Doyon, Limited; and Denakkanaaga, Inc. No federally recognized tribes or communities have been identified within 50 miles of the Study Area.

If you wish to comment on this finding I can be reached at the address above, by telephone at 907-451-5293, or by e-mail at *thomas.gamza@alaska.gov*.

Your timely response will greatly assist us in incorporating your concerns into project development. For that purpose, we respectfully request that you respond within thirty days of your receipt of this correspondence.

Sincerely,

A.X.

Thomas A. Gamza Cultural Resource Specialist-Archaeologist (PQI) State of Alaska DOT&PF, Northern Region

Enclosures:

Figure 1 Location, Vicinity & Area of Potential Effect with AHRS Site Locations

Electronic cc w/ enclosures:

Colleen Ackiss, P.E. DOT&PF Northern Region, Project Manager Brett Nelson, DOT&PF Northern Region, Regional Environmental Manager Kathy Price, DOT&PF, Statewide Cultural Resources Manager Alan Skinner, DOT&PF Northern Region, Design Engineer

Department of Natural Resources

DIVISION OF PARKS & OUTDOOR RECREATION Office of History & Archaeology

> 550 West 7th Avenue, Suite 1310 Anchorage, AK 99501-3561 907.269-8700 http://dnr.alaska.gov/parks/oha

File No.: 3130-1R FHWA/2019-00057

Subject: Richardson Highway MP 359 Railroad Grade Separated Crossing, Z607340000/0A24033

Thomas Gamza Department of Transportation & Public Facilities 2301 Peger Road Fairbanks, AK 99709-5316

Dear Mr. Gamza,

The Alaska State Historic Preservation Office (AK SHPO) received your letter (dated March 14, 2019) on March 18, 2019. Following our review of the documentation provided, we have the following comments on the determination of eligibility (Table 1) for listing on the National Register of Historic Places (NRHP).

Table 1. Determination of Eligibility

No.	AHRS#	Site Name	DOT&PF Determination	SHPO Comment
1	FAI-1752	Alaska Military Highway Telephone and Telegraph Line (AMHT&TL)	Not Eligible	There is no need to evaluate FAI- 1752 (AMHT&TL) because it is evident from your research that the AMHT&TL segment (MP 358-362 of the Richardson Highway) has been destroyed. Therefore, there is nothing to evaluate. We will update the AHRS card for FAI-1752 with this information.

Additionally, we reviewed the subject undertaking pursuant to Section 106 of the National Historic Preservation Act. Following our review, we concur with your finding of no historic properties affected for the subject undertaking.

Please note that as stipulated in $36 \ CFR \ 800.3$, other consulting parties such as the local government and Tribes are required to be notified of the undertaking. Additional information provided by the local government, Tribes or other consulting parties may cause our office to re-evaluate our comments and recommendations. Please note that our comment letter does not end the 30-day review period provided to other consulting

parties. Should unidentified cultural resources be discovered in the course of the project, work must be interrupted until the resources have been evaluated in terms of the NRHP eligibility criteria ($36 \ CFR \ 5 \ 60.4$) in consultation with our office.

Thank you for the opportunity to review and comment on the subject undertaking. Please contact Mark Rollins at 269-8722 or <u>mark.rollins@alaska.gov</u> if you have any questions or if we can be of further assistance.

Sincerely,

ther un

Judith E. Bittner State Historic Preservation Officer

JEB:mwr

106 PA Streamlined Project Review Screening Record for project updates

This form is required when Programmatic Allowances are being considered. It is not needed when circumstances lead directly to Sec 106 consultation under Appendix D. Form version 2-23-19

Project Name:	Richardson Highway MP 359 Ra	ilroad Grade Separated Crossing		Yes	No
State Project #:	Z607340000	Federal Project #: 0A24033	Assignable:	\mathbf{X}	

Project Description:

The project as a whole, which was previously reviewed on April 5, 2019, consists of replacing the existing at-grade railroad crossing and signal infrastructure with a new grade-separated bridge that raises the Richardson Highway main line over the railroad. Additional project activities include connecting to a separated-pathway along the northern right-of-way line, creating a troop access tunnel under the Richardson Highway, and improving: pavement markings, signage, drainage, and highway illumination (Figures 1A and 1B). This project update adjusts the project description to include relocating utility and overhead transmission lines, and removing the proposed highway interchange. The removal of the highway interchange from the project description, will result in a reduction in the overall size of the project APE. All project activities are listed below.

Project Activities (please list individually; continue on next page if needed)	Indicate which Programmatic Allowance applies (Ex: Tier 1.a or Tier 2.b)	Are all con including H Analysis if	listorio	c Rds
Utility relocates	2.1	🔀 Yes		No
Overhead transmission line relocates	2.1	🔀 Yes		No
		🗌 Yes		No
		Yes		No
		🗌 Yes		No

* If yes, attach documentation of identification efforts that support this decision. This documentation must be sufficient to allow any reviewing party to understand the basis for the decision. The Area of Potential Effect (APE) must be included in this documentation for Tier 2 allowances. If Historic Roads Analysis applies, also document which HRA option was used, and how it was applicable.

Description of APE (attach figures): If all activities above are Tier 1, an APE is not required

The APE for this project is shown on Figure 1A, and includes the entire right-of-way of the Richardson and Old Richardson Highways, which parallel each other around mile point 359. This UPDATE reduces the size of the APE, as the proposed highway interchange has been removed from the project APE.

Screening Results:

This is an addendum to a previously reviewed project. See Comments Section for details.

Does this update include any activities which are not covered under the Appendix B Programmatic Allowances and/or which do not meet the conditions?

🗙 Yes 🗌 No

If yes, conduct standard Section 106 review for the entire project in accordance with PA Appendix D.

have screened this update and determined that it	🔀 Does	Does Not	qualify for processing	g as a Programmatic Allowance.
--	--------	----------	------------------------	--------------------------------

Holly McKinney

Holly McKinney

Date: 08/03/2020

DOT&PF PQI (printed name and signature)

Continuation Sheet- 106 PA Screening Review Record

Project Activities-Continuation	Indicate which Programmatic Allowance applies	Are all conditions met, including Historic Rds Analysis if applicable?*	
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No
		🗌 Yes	🗌 No

Additional comment space: (include Historic Roads Analysis if applicable)

This 106 PA UPDATE reduces the APE in size as the proposed highway interchange has been removed from the project description. This UPDATE also adds utility and overhead transmission line relocates to the project description.

This project meets all of the Tier 2 Allowance General conditions (1-6) as outlined in the Programmatic Agreement (PA) Appendix B October 2018.

1. The UPDATED project activities are occurring adjacent to existing transportation facilities (the Richardson and Old Richardson Highways).

2. The APE is not within a National Historic Landmark.

3. The Project is not within or adjacent to a Historic District (AHRS Database (08/03/2020)).

4. There are not standing buildings or structures within the APE that are more than 45 years of age. Therefore, the project qualifies for streamlined review under general conditions 4.c.

5.a. The project UPDATE activities are occurring within previously disturbed ground by initial road and path construction and subsequent maintenance activities.

6. The project has no known tribal concerns or public controversy related to historic preservation.

this determination only applies to the project as it has been presented as of August 3, 2020. Any modification to the project APE or other specifics will require further cultural resources review.

Attachment 3 Air Quality Conformity Documentation

- 3A FNSB Air Quality Boundaries and Exhibits
- 3B Conformity Analysis for the 2040
- Metropolitan Transportation Plan
- 3C- Air Quality Conformity Memorandum

FNSB Air Quality Boundaries

Fairbanks Portion of Air Quality Control Zone

🔷 95.915884

North Pole Portion of Air Quality Control Zone

& 62.996234

PM 2.5 Nonattainment Area

PM 2.5 Non-Attainment Area

The different boundaries for air quality regulations in the Fairbanks North Star Borough as of October 2017.

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL HIGHWAY ADMINISTRATION ALASKA DIVISION 709 W. 9TH STREET, ROOM 851 P.O. BOX 21648 JUNEAU, ALASKA 99802-1648

FEDERAL TRANSIT ADMINISTRATION 915 SECOND AVENUE, SUITE 3142 SEATTLE, WASHINGTON 98174

January 30, 2019

Mr. Jackson Fox Executive Director Fairbanks Metropolitan Area Transportation System 2301 Peger Road Fairbanks, AK 99709

In Reply Refer To:

Subject: FMATS 2045 Metropolitan Transportation Plan Air Quality Conformity

Dear Mr. Fox:

The air quality conformity analysis for the Fairbanks Metropolitan Area Transportation System (FMATS) 2045 Metropolitan Transportation Plan (MTP) submitted with your letter of January 23, 2019 has been reviewed. We find that:

- Total regional vehicle-related PM 2.5 and NOx precursor emissions for the required analysis years of 2019, 2025,2035, and 2045 are below the applicable motor vehicle emission budgets in the moderate State Implementation Plan (SIP).
- All CO conformity requirements for the limited maintenance plan are met.
- Interagency consultation was conducted in accordance with Federal requirements.

The Federal Highway Administration and Federal Transit Administration approve the conformity determination for the FMATS 2045 Metropolitan Transportation Plan.

If you have any questions, please contact Mr. John Lohrey, FHWA Transportation Planner at (907) 586-7428, or Mr. Ned Conroy, FTA Community Planner at (206) 220-4318.

Sincerely,

Sandra A. Garcia-Aline Division Administrator Federal Highway Administration LINDA M GEHRKE Digitally signed by LINDA M GEHRKE Date: 2019.01.30 11:58:10 -08'00'

Linda M. Gehrke Regional Administrator Federal Transit Administration

Electronically cc: Ned Conroy, FTA Judy Chapman, AK DOT&PF Northern Region

MEMORANDUM

TO: Colleen Ackiss, P.E. Engineering Manager Northern Region

FROM: Pam Golden, P.E. Traffic & Safety Engineer Northern Region State of Alaska Department of Transportation & Public Facilities Northern Region Design and Engineering Services

DATE: 04/26/2019

FILE NO: Projects\Rich_Hwy\60734_Rich_359_GradeSepFac\07 Environmental\00 Env General\Air quality\TS Conformity

PHONE NO: 451-2283

FAX NO: 451-5390

SUBJECT: Richardson Hwy MP 359 Interchange and RR Grade Sep Z7607340000/0A24033 Air Quality Conformity

40 CFR 93.126, Table 2, line #1 indicates railroad/highway crossing improvements are exempt from the requirement to determine conformance to adopted air quality plans, which applies to the railroad grade separation portion of subject project.

Line #2 of that same table indicates projects that correct, improve, or eliminate a hazardous location or feature are also exempt. It is the opinion of the Traffic & Safety office that this project eliminates a hazardous location. In the existing configuration, northbound Richardson Highway traffic wishing to exit the highway to access the Old Richardson Highway area crosses the southbound prism of the Richardson Highway at grade. Northbound drivers must exit to the left, which violates driver expectation. Further, trucks wishing to use the exit must weave across all northbound lanes of traffic due to being required to stop in the truck/bus lane at the railroad crossing that is also a part of this project. Posted highway speed in this area is 60 mph. Sight distance at the crossing is good; however this is the only at grade street crossing in the first 5.8 miles of the southbound prism of the Richardson Highway.

Crashes with vehicles traveling at 60 mph generally have more severe outcomes than those at lower speeds, making this an inherently high consequence location should crashes occur. This project aligns with Strategy 2 of Alaska's Strategic Highway Safety Plan as elimination of this at-grade intersection would remove the high speed conflict point.

pkg/kbg (b)

Attachment 4 Flood Zones

4A – Flood Zone A Figure4B – Flood Zone A Map4C - Location Hydraulics Study

NOTES TO USERS

This map is for use in administening the Nexional Rood Insurance Program. It does not necessarily identify all arcess subject to flooding, particularly ident local dramage sources of small size. The community map repository should be consulted for possible updated or additional Bood hazard information.

To obtain more detailed efformation in main water Base Reod Elevations (REV) to obtain more detailed efformation in main water Base Reod Elevations (REV) Profiles are Rodowy Data and/or Summary of Shikard Robustions tobles contained within the Rodom teams Skyly (RS) Represent another within the RNL users about the second second second second second within the RNL users are the REV second second second second second second within the Rodom teams Skyly (RS) Represent another within the indication date users also are charter within the Rev and the Rev and the second second second second second within the RIM second second second second revealed and the second second second second revealed and the second second second second revealed and the RIM second revealed and the revealed in the RIM second revealed and the revealed re

Coastal Base Flood Elevations show on this map apply only landwaid of 0.0 North Annexan Verfacil Datum of 1988 (HAVO 88). Users of this FIRM broad ba aware that coastal bod elevationa are also provided in the Summary of Silhwaie Elevations table in the Fibred Insurance Study Record for this practices. Elevations above in the Summary of Silhwaie Elevations table should be used for constraints and/or bodytem management purposes when likey are higher than the deviations above on the FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the Mational Flood Inserance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report this jurisdich

Certain areas not in Special Flood Hazard Areas may be protected by flood cont structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insuran Study Report for information on flood control structures for this jurisdiction.

Accredited Levee Notes to Users: Check with your local community to obt Sozzieliko Levie Notes to Users. Letos with your food ournewwwy to useru more information, such as the estimated leviel of notection provided (which may exceed like Expressi-annual-chance levis) and Emergency Action Plan, on the livere system(c) shown as providing protection to across on itms panel. To mitigate flood risk in restatual insk areas, properly owners and residents are encouraged to consider flood insurance and Rodorzoning or other protective easures For more information on flood insurance, interested parties should at the FEMA Website at http://www.fema.gov/business/hfipfindex.shtm

The projection used in the preparation of this may was Alaxia State Plane 3 Zone (1913 Jone 5001). The horizontal datum was NAD 35, GHS 1880 production of (1914 and 2014) and the production of (1914 for additional and 1914 for additional of the production of (1914 for additional productions rang routing in shiph) pollution differences in map features across jandiction boundaries. These differences do not affect the accuracy of the FIRM.

Flood elevations on this map are referenced to the North American Varical Datum of 1955. These flood elevations must be compared to intruction and ground elevations between this Narican Gaostav Verstan Datum of 1952 and the North American Versian Datum of 1968, visit the National Goodetic Survey at the following logicitizenge.good of the National Goodetic Darvey would en the following comparison of the National Goodetic Darvey at the following logicitizenge.good of the National Goodetic Darvey at the following the following comparison of the National Goodetic Darvey at the following the following comparison of the National Goodetic Darvey at the following the following comparison of the National Goodetic Darvey at the following the National Science (Science Science Scie

NGS Information Services NOAA, N/NGS12 NOAA. N/NG512 National Geodetic Survey SSNC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench ma shown on this map, please contact the Information Services Branch of the Nations Seodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.ngas.gov

Base map information shown on the FRM was derived from multiple sources. Basis rasp files were provided in digital format by Farbanks North Star Borough, AK DNR, and USSS and BLM. This information was compiled at various map scales during the time period 2001-2008.

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, is some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Based on updated topographic information, Ris map reflects more detailed and up-to-site stream: channel configurations and floodplain defineations than blore shown on the previous FRM for this juris/cont. As a result, the Flood flourance Staty (Riport (which contains authorative hydraid; cata) may reflect allowance, Staty (Riport (which contains authorative hydraid; cata) may reflect allowance staty may rest and the state of the rest and the state of the store and the observation of the state of the state of the store and the state of the state of the state of the store and state of the state of the state of the store and state of the store and state of the store of the state of the store and state of the store of the store store of the store of store of the store of the store of the store of store of the store of store shown on one-yous macs.

Corporate limits shown on this map are based on the best dists available at the time & publication. Because changes due to annexations or de-annexations may have socured after this map was published, may users should contact appropriate community officies to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of th reask terrer to the appartiely pinket Map Index for an overview map of the coundy showing the layout of map panets; commanity map repository addresses; and a Listing of Communities table containing National Flood travance Program dates for each community as well as a heling of the panets on which each community is located.

For information on available products associated with this FIRM wait the Map Service Center (MSC) website at <u>http://msc.fam.gov.</u> Available products may include previously issued Littlers of Map Change a Flood Insurance Study Reput, and/or digital variance at this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have guestions about this map , how to order products or the National Flood Insurance Program in general, piease call the FEMA Map Information eXchange (FMIX) at _1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.ferna.gov/business/nlip.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD However, Through the View of View o ZONE A No Bare Flood Develops overminer. 20NE AE Base Flood Flow: ows determined cod depths of 1 to 3 feet (usually asses of ponting); Base Hood Elevations (contact) ZONE AH ZONE AO Food orphis of 1 to 3 lett (usually sheet flow on slipping timesh); we age depths determined. For areas of a lavel lan Fooding, velocities a so determine Spec of Hood Hazerd Ansis for service y protected how the 1% similar curves Food to a float core system that was subsequently detail/As. Tore-AS' visites to the former float core system is the protect to powder contaction from the 1% arrange shows any subset float. Here to be protected from 1% similar bloater float or y a heteril float contention system under construction; no Base if nod E exations determined. ZONE AR ZONE A99 ZONE V Coasta Rood zone with velocity hazard (wave action); no Base Flood Stevation ZONE VE Coastal fload zone with velocity nazard (wave action). Base Flood Elevations actions/ FLOODWAY AREAS IN ZONE AE the foodway-s the charmet of a stream plus any apport. Foodplan areas that must be kept free of encreastment to that the LHS armse chance flood can be carried without substantial increases in food health. OTHER FLOOD AREAS Areas of 0.2% annual chance Food; eness of 1% annual chance flood with everage depths of less than 1 foot or with drainage areas less than 8 square mile; and areas protested by fevres Form 1% annual chance flood. ZONE X OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance Roodplan ZONE D Areas in which food hazzrds are undetermined, but possible COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and GPVs are normally located within or adjacent to Special Rood Navard Areas. 1% Annual Chance Foodstam Boundary 0.7% Annual Charce Foodpain Boandury Floodway boundar ____ /ore Disoundary ___ CBRS and OPA boundary Boundary d'viding Specie: Flood Hakard Aveas of different Base Hood Hevebors, Road dentits or Food velocities. Base Root Elevation ine and value; Hevalion in foot* ~~_____ Base Hood Elevation, volue where uniform within zone; le evation in face! (EL 587) Referenced to the North American Vertice: Datam of 1988 -(A) (A)— Cross section live 20 - - - -- - 20 Transect ine OAO \sim Enrine 45- 52 68", 63- 62 12-Geographic coordinates references to the North American Datum of 1963 (NAD 83) Western Homophyse 3120023911 5600-Book Exist: Alaska State Plane 3 Zone (FIPS Zone 5003), Transverse Marcator projection 1600-meter Universal Transverse Marcator grid valves, zone 6 <189**** N Samon mans (see explaination in Notes to Users sector) of this FBRM panel) DX5510 × * M7 5 River Mic WAP REPOSITORES WAP REPOSITORES Refer to Map Repositores lation Wap, index EFFECTIVE DATE OF COUNTY/MDE FLOCD INSURANCE RATE MAP March 17, 2014 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community imaginary size history prior to contrivive range eigenities the Community Map 1 istory table technologies the Flood finanzance Steely report for the (weakdow) To determ ne if flood insurance is available in this community, coviact your insurance agent or call the Nancosi Frood Insurance Program at 1400-638-6690. MAP SCALE 1" = 1000' 1000 2100 FEET ٥ 300 NEP PANEL 4385J IRANGE EROLGRAM FIRM FLOOD INSURANCE RATE MAP FAIRBANKS NORTH STAR BOROUGH, ALASKA PANEL 4385 OF 7300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS COMMUNITY NUMBER PANEL SUFFOR WINDOWS VONTHISMIN, 2010/00 4285 / g **JOH** Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community. -WATOWAE Ľ MAP NUMBER 02090C4385J EFFECTIVE DATE MARCH 17, 2014

Federal Emergency Management Agency

MEMORANDUM

State of Alaska Department of Transportation & Public Facilities Northern Region Materials

TO: Holly McKinney, PhD Environmental Analyst Northern Region DATE: August 10, 2020

TELEPHONE NO: 451-5389

FROM: Jeff Stutzke, P.E. Regional Hydraulics Engineer Northern Region SUBJECT: Rich Hwy MP 359 Railroad Grade Separated Facility Z607340000/A024033 Location Hydraulic Study

Introduction

This Location Hydraulics Study (LHS) was prepared to assess the impacts from the proposed railroad grade separation project near Milepost (MP) 359 on the Richardson Highway. The proposed work for this project has been determined to encroach onto a mapped 100-year floodplain.

Project Description

The project will replace the existing at-grade railroad crossing and signal infrastructure with a new gradeseparated bridge(s) that raises the Richardson Highway main line over the railroad (Figure 1).

Additional work consist of:

- Grading
- Highway resurfacing
- Drainage improvements
- Utility relocations.
- Guardrail and end treatments.
- Highway illumination
- Replace all signs.
- Pavement highway markings.

Floodplain Encroachment

If a proposed action involves an encroachment, the impacts must be assessed in a location hydraulic study (LHS), as required under 23 CFR 650.111. An encroachment is any action (highway construction, reconstruction, rehabilitation, repair or improvement) within the limits of the base floodplain. The LHS is an assessment of floodplain hazards that usually does not require extensive engineering analysis. The LHS identifies and describes the floodplain context of the project and describes how the ADOT&PF will address risks and floodplain-related design objectives.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by FHWA and DOT&PF.

There are two specific types of floodplain encroachments to be considered in an LHS:

Longitudinal encroachment: An encroachment that is parallel to the direction of flow, such as a highway that runs along the edge of a river.

Significant Encroachment: A highway encroachment and any direct support of likely base floodplain development that would involve one or more of the following construction- or flood- related impacts:

- A significant potential for interruption or termination of a transportation facility which is needed for emergency vehicles or provides a community's only evacuation route.
- A significant risk to life or property.
- A significant adverse impact on natural and beneficial floodplain values.

Figure 1 Project Site

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by FHWA and DOT&PF.

Floodplains

Federal Highway Administration (FHWA) regulations in 23 CFR 650 apply to encroachments in all base floodplains (1% annual chance flood hazard), not just those that are mapped and regulated by the Federal Emergency Management Agency (FEMA) under the National Flood Insurance Program (NFIP). Unmapped base floodplains are often called unregulated floodplains. This Richardson Highway project occurs in in areas that have regulated (mapped) floodplains.

The FEMA Flood Insurance Rate Maps, dated 3/17/2014, shows most of the project in Zone X, the area of being protected from the 1-percent annual chance or greater flood hazard by a levee system.). In the project corridor, there is a Special Flood Hazard area 'Zone A' on the south side of the Richard Highway, including the railroad track area (Figure 2). The Special Flood Hazard area Zone A is an area where no base flood elevations have been determined.

Flood Zone(s)

X and A

Map Panel(s)

02090C4385J & 02090C4383

Project Area

Rich Hwy MP 359 corridor

Figure 2. FIRM Panel of Project Site

Risks Associated with the Implementation of the Action

The risks associated with this project are low. In this context, "risk" means the consequences associated with the probability of flooding attributable to the encroachment, proposed work will improve or maintain existing water conveyance. The bridge work in Zone X will be performed without raising the base flood elevation minimizing risk of significant damage or hazard to people and property for conditions up to the design flood. Complete avoidance of the floodplain is not possible due to the large extents of the floodplain around and adjacent to the project area, therefore no practicable alternatives exist that would avoid or further minimize impacts to the floodplain.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by FHWA and DOT&PF.

Impacts on Natural and Beneficial Flood Plain Values

Natural and beneficial floodplain values include, but are not limited to: fish, wildlife, plants, open space, natural beauty, scientific study, outdoor recreation, agriculture, aquaculture, forestry, natural moderation of floods, water quality maintenance, and groundwater recharge. This project should not significantly impact the natural and beneficial floodplain values. The design will minimize the footprint of the project to the extent practicable. Any riparian vegetation will be preserved or established and roadway drainage will be improved.. The proposed project should preserve, and may even enhance, the natural and beneficial floodplain values.

Measures to Minimize Flood Plain Impacts Associated with the Action

Measures to minimize floodplain impacts will be incorporated into the design and construction of this project. They include the following:

- Maintain the existing flow distributions to the extent practicable.
- Minimize the footprint of the project to the extent practicable.
- Erosion and sediment control measures will be implemented during construction.

The project will not involve significant encroachments and should not support incompatible floodplain development. Proposed work will improve water conveyance and no adverse flood plain impacts are anticipated.

Support of Probable Incompatible Floodplain Development

"Support of base floodplain development" means to encourage, allow, serve, or otherwise facilitate additional base floodplain development. Direct support results from an encroachment, while indirect support results from the action out of the base floodplain.

This project is subject to local, state, and federal floodplain regulations. The project is located within a NFIP regulated floodplain. Other non-DOT&PF projects within the Fairbanks North Star Borough jurisdictional boundary are also subject to the FNSB floodplain ordinance. Hence, it is improbable that incompatible floodplain development would receive support from this project.

Consistency with existing watershed and flood plain management programs.

DOT&PF will contact the FNSB Flood Plain Administrator to fulfill submittal requirements that is consistent with local flood plain management interests. A Non-Structural Development Floodplain Permit Application will be required if work encoraches south of the Richardson Highway into Zone A.

Submittal requirements of the permit will adhere to the checklist as outlined in the permit application that include, but are not limited to; final grading plans, show any changes in water flow, fill elevations and show areas of potential stockpiled materials. The project will not involve significant encroachments and as discussed above, should not support incompatible flood plain development. Work will be within existing right-of-way. There will be no loss of flow conveyance to carry base flood and storage capacity will not be affected by proposed improvements in this project's final condition.

If you have questions, I am available to discuss.

Jeff P. Stutzke, P.E. Regional Hydraulics Engineer Northern Region

References

Alaska Department of Transportation and Public Facilities, 1995, "Alaska Highway Drainage Manual", Juneau, AK.

Alaska Department of Transportation and Public Facilities, 2005, "Alaska Highway Preconstruction Manual", Juneau, AK.

Federal Emergency Management Agency, 2014, "Flood Insurance Rate Map - Fairbanks North Star Borough, Alaska", Map Number 02090C4385J dated March 17, 2014. Accessed via FEMA Map Service Center website (http://msc.fema.gov/portal/) on December 18, 2017.

Attachment 5 Noise Memorandum

MEMORANDUM

State of Alaska Department of Transportation & Public Facilities Northern Region Design and Engineering Services

TO: Brett Nelson EIA Manager I Northern Region DATE: November 2, 2018

FILE NO: H:\Projects\Rich_Hwy\60734_Rich_359_GradeSepFac\10 Reports\Noise Memo

PHONE NO: 907-451-5331

FAX NO: 907-451-5126

SUBJECT: Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000/0A24033 Highway Noise Impact and Mitigation Analysis

Summary

The Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility project (Z607340000/0A24033) does not meet the federal and state threshold requirements for preparing a quantitative highway noise impact and mitigation analysis. This memorandum presents data to support the conclusion that a noise analysis is not warranted or required.

Project Description

The project is located between MP 358.75 and MP 360.25 on the Richardson Highway. The atgrade railroad crossing (at MP 359.2) and at-grade left turn from the northbound Richardson Highway to the Old Richardson Highway (at MP 359.6) introduce consecutive obstacles for traffic, particularly large commercial trucks accessing the industrial areas of South Fairbanks via the Old Richardson. The project will improve operations by:

- Constructing an interchange at the Richardson Highway and Old Richardson Highway to replace the existing left turn intersection at MP 359.6.
- Grade separating highway traffic to pass over the railroad facility at MP 359.2.

Both grade separations will require new, individual bridges. These raised structures introduce vertical elements that are not present in the existing condition and could lead to potential noise and visual impacts to neighboring properties.

FROM: Alan F. Skinner, P.E. Engineer I Northern Region Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000/0A24033 Highway Noise Impact and Mitigation Analysis

Project Area Description

Refer to the *Existing and Background Traffic Conditions and Safety Analysis Technical Memorandum #1*, dated June 2, 2017 and located in the Environmental Project File, for a detailed description of the project area and current traffic and safety concerns.

Alaska DOT&PF Noise Policy

Traffic noise evaluations conducted in Alaska use the technical guidance outlined in the DOT&PF *Noise Policy* (DOT&PF, 2011) for state- and federally-funded highway projects. This policy and outlined procedures are based on the FHWA federal noise criteria and standards (23 CFR 772).

The DOT&PF *Noise Policy* applies to all Type I federal highway projects in the State of Alaska, that is, any project that receives federal-aid funds or are otherwise subject to FHWA approval. This also includes federal projects that are administered by DOT&PF. The DOT&PF *Noise Policy* lists 8 kinds of Type I projects. Because the proposed project is physically altering an existing highway, of relevance to this project is the applicable Type I project description:

"(2) The physical alteration of an existing highway where there is either:

(i) **Substantial Horizontal Alteration**. A project that halves the distance between the traffic noise source and the closest receptor between the existing condition to the future build condition; or,

(ii) **Substantial Vertical Alteration**. A project that removes shielding therefore exposing the line-of-sight between the receptor and traffic noise source. This is done by either altering the vertical alignment of the highway or by altering the topography between the highway traffic noise source and the receptor."

The proposed project includes changes to the horizontal and vertical alignment of the existing highway. If the project does not cause the edge of the pavement of the outside lane of the highway to move 50% or more closer to the adjacent receptors, then the threshold for requiring a noise analysis under the "substantial horizontal alteration" qualifier would not be met. Likewise, if the project does not remove shielding and thereby exposing the line-of-sight between the receptor and the traffic noise, then the threshold for requiring a noise analysis under the "substantial vertical alteration" qualifier would not be met.

The applicable Activity Categories found in the study area are residential (Activity Category B), recreational (Activity Category C), and industrial (Activity Category F). The 23 CFR Section 772.11(c)(vi) defines Category F as including "developed lands that are not sensitive to highway traffic noise. There are no impact criteria for the land use facilities in this activity category and no analysis of noise impacts is required." Table 1 includes the applicable Activity Categories and corresponding noise abatement criteria (NAC) from 23 CFR 772.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility 7.607340000/0A24033 Highway Noise Impact and Mitigation Analysis

Activity	FHWA	DOT&PF	Evaluation	Land use activity description
category	Noise	Noise	location	
	Abatement	Abatement		
	Criteria	Criteria		
	Leq(h) ¹	$Leq(h)^2$		
В	67	66	Exterior	Residential.
С	67	66	Exterior	Active sport areas, amphitheaters,
				auditoriums, campgrounds, cemeteries,
				day care centers, hospitals, libraries,
				medical facilities, parks, picnic areas,
				places of worship, playgrounds, public
				meeting rooms, public or nonprofit
				institutional structures, radio studios,
				recording studios, recreation areas,
				Section 4(f) sites, schools, television
				studios, trails, and trail crossings.
F	-	-		Agriculture, airports, bus yards,
				emergency services, industrial, logging,
				maintenance facilities, manufacturing,
				mining, rail yards, retail facilities,
				shipyards, utilities (water resources,
				water treatment, electrical), and
				warehousing.

Table 1: Applicable Noise Abatement Criteria

¹The Leq(h) Activity Criteria values are for impact determination only and are not design standards for noise abatement measures

²DOT&PF noise abatement "approach"

Requirement to Perform a Noise Analysis

To accommodate the interchange, the northbound Richardson Highway will be realigned approximately 200 feet to the south to become parallel to the southbound lane bringing northbound and southbound traffic together under the new overpass. The over-height vehicle bypass will likely follow the existing horizontal alignment for the northbound Richardson Highway with the vertical profile being raised at the bridge and lowering back to existing ground at the ramp ends. The bridge will be within 200 feet north or south of the existing at-grade intersection depending on final design. To be conservative, this memo assumes the bridge will be located 175 feet north or as close as possible to the more sensitive Category B and C receptors.

For the railroad overpass, there will be no lateral shift at the railroad crossing. The overpass will be constructed in place.

Horizontal alteration

To determine whether the proposed improvements would cause the edge of the pavement of the outside lane of the highway to move 50% or more closer to the receptor, the distances between the receptors adjacent to the highway under the existing and future proposed conditions were measured. Measurements were made using aerial photography, GIS and AutoCAD project design files.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000/0A24033 Highway Noise Impact and Mitigation Analysis

Figure 1 shows the distances between the existing edge of pavement for the outside highway lane and the future proposed edge of pavement for nearby receptors for both grade separated crossings. For all improvements, the distance from the highway to the Category B and C receptors either remains the same or only slightly decreases. The interchange location will move turning traffic about 140 to 175 feet (9% to 11%) closer horizontally from the Category B receptors while remaining roughly the same distance (3100 feet) away from Category C receptors. Northbound highway traffic will move further away from Category B receptors by up to 200 feet. The railroad overpass will follow the existing alignment, resulting in no shift to the 3600 feet horizontal distance from the nearest Category B receptors or the 1800 feet to Category C receptors.

Category F receptors do not require mitigation from highway noise.

The roadway would not move 50% or closer to receptors as a result of the project; therefore, **no** substantial horizontal change would occur.

Vertical alteration

Based on the available design details at this time, the roadway adjacent to the specifically identified receptors would be raised approximately 25 feet above the existing grade at the interchange and 28 feet at the railroad overpass. Changes in vertical grade would occur at a distance of between 1300 feet and 1850 feet from identified Category B and C receptors; and in all cases, between 250 and 400 feet of forested areas would exist between residences and the new highway alignment.

Despite the generally flat topography and lack of topographic shielding, there is currently no clear line of sight between receptors and the highway due to mature treed areas. Direct topographic shielding would not be eliminated as a result of raising the grade and there would be no new line of sight established because of the continued presence of forested areas between the highway and receptors. The effects of ground attenuation would be reduced to a degree as turning traffic for the highway is raised, but at a distance of 1300 feet to 1850 feet, it is not likely that this would cause a perceptible increase in noise (i.e. 3 dBA or more), especially in cases where the highway is moving away from receptors as a result of the project. Overall highway noise may actually decrease due to the direct screening of the mainline Richardson Highway by the over-height vehicle bypass embankment as well as continuous turning traffic rather than braking and rapid starting of heavy vehicles.

The railroad overpass is 3600 feet from the nearest Category B receptors and 1800 feet from Category C receptors. Each of these receptors are separated from the railroad overpass by mature trees without a direct line-of-sight to the proposed facility.

In summary, it is concluded that:

- The generally flat topographic terrain would not result in shielding being removed as a result of raising the grade of the highway.
- No new direct lines of sight would result from raising the grade of the highway or constructing the interchange ramps and overcrossing because the forested nature of the terrain shields the view of the highway from nearby receptors.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility 260734000070A24033 Highway Noise Impact and Miligation Analysis

- The effects of reduced ground attenuation would be minimal at distances of 1300 to 1800 feet and would not result in significant changes in noise levels, especially where the highway is moving away from receptors.
- The proposed vertical changes to the highway at the railroad crossing and interchange would not be substantial and would not classify the project as a Type I project.

Conclusion

Based on the proposed highway changes at the railroad crossing and grade-separated interchange, the project would not result in substantial vertical or horizontal alteration. The project does not meet the definition of a Type I project.

A quantitative technical noise analysis is not required to satisfy the procedural requirements in 23 CFR 772 or DOT&PF's 2011 *Noise Policy*.

References

23 CFR 772. Federal Highway Administration, Procedures for Abatement of Highway Traffic Noise and Construction Noise. US Code of Federal Regulations.

Alaska DOT&PF Noise Policy, Apr 2011.

Kittleson & Associates, Inc., Existing and Background Traffic Conditions and Safety Analysis Technical Memorandum #1, Jun 2017.

cc: Figure 1

Attachment 6 Website Content for Online Open House

You are here: DOT&PF > Northern Region > Projects > Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

deen Llighwey MD 250 Internhenze and Deilrood Orade Constant Cosility - Transportation & Dublic Cosilities

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

project number: Z607340000 / 0A24033

WELCOME TO OUR ONLINE OPEN HOUSE!

The Alaska Department of Transportation and Public Facilities (DOT&PF) would like your feedback on the preliminary design concepts developed for the *Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility* project. With this project, the DOT&PF intends to accomplish the following goals:

- Improve corridor safety and operations by grade separating at-grade crossing maneuvers.
- Improve connectivity with the Old Richardson Highway, particularly for freight vehicles.

This Open House will run **December 19, 2018 to January 25, 2019.** All comments must be submitted no later than January 25, 2019 to be considered in the final evaluation and design. The following opportunities are available for submitting any feedback, concerns, or personal preferences:

 <u>CLICK HERE</u> to print a comment sheet that you can fill out and MAIL directly to: Colleen Ackiss, Project Manager
 Department of Transportation & Public Facilities
 2301 Peger Road
 Fairbanks, AK 99709

- Call us directly at:
 - DOT&PF Project Manager Colleen Ackiss, (907) 451-5179 (TDD) (907) 451-2363
 - CH2M Project Manager Jim Potts, (907) 762-1518
- E-MAIL us directly at:
 - colleen.ackiss@alaska.gov
 - James.Potts@jacobs.com

Project information is provided below in the following sections:

PURPOSE AND NEED BACKGROUND DESIGN CONCEPTS PROJECT TIMELINE

Looking for more information? A project stakeholder meeting will be held **January 24, 2019** from 2pm-4pm in the Main Conference Room at the Fairbanks DOT&PF offices (2301 Peger Rd) for members of the trucking industry, the military, nearby businesses, and other potentially affected users of this important corridor. Engineering drawings and project team members will be present at that time.

PURPOSE AND NEED

Between 2008-2012 a total of 24 crashes have occurred on the Richardson Highway in the proposed project vicinity. Studies indicate that safety improvements are needed due to the frequency and potential severity of crashes at highway speeds. The proposed project promotes safe access and supports the continued transition of the segment of the Richardson Highway between Fairbanks and the Eielson Air Force Base to a controlled-access freeway. Additional detail for the purpose and need for safety and access improvements at these critical intersections can be found in the <u>Richardson Highway MP 359 Grade Separated Facility: Interchange Concept Development Memo</u>.

Project Information

- <u>Flyover Concept</u>
- Modified Diamond Concept
- <u>Comment Sheet</u>
- <u>Comment Sheet</u>

Contact Information

For more information, contact:

Colleen Ackiss, P.E.

DOT&PF Project Manager 2301 Peger Rd Fairbanks, AK 99709-5316 0 451-5179 Colleen.ackiss@alaska.gov To correspond by text

telephone (TDD) (907) 451-2363

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017, and executed by FHWA and DOT&PF.

Please note: You must have Acrobat Reader to open any PDF documents on this page. If you do not have Acrobat Reader, click to download the FREE software Ger Mober

Existing At-Grade Railroad Crossing Conditions

When active, the existing at-grade railroad crossing causes traffic delays; when not active, it still requires some vehicles to stop at the crossing utilizing the pullout lanes. These vehicles, often freight traffic hauling hazardous materials, must accelerate and merge with traffic after stopping. Due to the northbound exit's proximity to the railroad crossing, some of the same vehicles stopping at the railroad crossing have difficulty maneuvering through three lane changes in less than a half mile to make the existing left-hand exit.

Existing Northbound Exit At-Grade Intersection Conditions

The northbound left-hand exit from the Richardson Highway to the Old Richardson Highway causes safety issues and delays to traffic. The existing intersection configuration serves two movements; Old Richardson Highway to southbound Richardson Highway and northbound Richardson Highway to Old Richardson Highway via at-grade ramps.

The proposed project would construct a northbound exit to the Old Richardson Highway. The lefthand exit would be converted to a right-hand exit to meet driver expectation for freeway exits. Replacing the at-grade northbound exit with an interchange would allow northbound traffic to access the Richardson Highway from the Old Richardson and eliminate delays for southbound traffic. This would serve the purpose of improved freight mobility due to the new interchange ramps and the new accommodations for over height and overweight trucks.

BACKGROUND

The Richardson Highway is the main route for users to travel between Fairbanks and Fort Wainwright, North Pole, Eielson Air Force Base, and beyond. It is classified as an interstate highway and the speed limit on this study segment is 60 mph. Old Richardson Highway is classified as a minor arterial and connects the Richardson Highway with the Cushman Business Area. Land uses along Old Richardson Highway are mainly commercial with some industrial. Lakeview Drive is a local road that serves a small residential area to the south of the study area, as well as several commercial and industrial facilities.

The Richardson Highway is a critical freight corridor and is a part of the National Highway Freight Network (NHFN), connecting Fairbanks and North Pole with communities in eastern Alaska, Canada and the contiguous 48 states. This road has a large percentage of truck traffic and is designated as an official route for long-combination vehicles. The Richardson Highway supports military operations at both Fort Wainwright Army and Eielson Air Force bases and is considered part of the National System of Interstate Defense Highways and the Strategic Highway Network (STRAHNET).

Multiple planning documents have officially called for improvements on the Richardson Highway:

- The Fairbanks Metropolitan Area Transportation System (FMATS) Policy Committee adopted a resolution (1984) that stated the Richardson Highway should be designated as a freeway between Fairbanks and Eielson Air Force Base.
- The preliminary Planning and Environmental Linkage (PEL) study (2017) recommends the construction of a high mobility intersection that includes grade separation at MP 359 for both the Richardson Highway and the Alaska Railroad crossing.
- The Alaska State Rail Plan (ASRP) calls for the removal of at-grade railroad/highway crossings throughout the state to enhance safety.

1/31/2010 DESIGN CONCEPTS

The Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility project consists of two primary components for which we are requesting feedback 1) the Railroad Crossing and 2) the Highway Interchange. Both components would include roadside hardware, drainage improvements, and utility relocations. Additional detail on the engineering analysis of the design concepts can be found in the <u>Richardson Highway MP 359 Grade Separated Facility: Interchange</u> <u>Concept Development Memo</u>.

Deilroad Crade Concreted Eacility

1. Railroad Crossing

The design concept recommended by the engineering team to address the safety issues at the at-grade railroad crossing is a proposed grade separated railroad crossing that would raise the highway mainline over the railroad about 30-feet to provide clearance over the tracks. Reconstruction of approximately 1600' of highway on each side of the crossing will be required to achieve the separation. The concept would maintain the existing railroad routes and no realignment of the railroad tracks is required.

Adjacent to the railroad crossing overpass, a troop access underpass facility is under consideration. This would allow for troops to cross under the highway from Fort Wainwright to access the small arms range on the south side of the highway. The exact location and design specifications for this project component would be determined during a later design phase based on the needs of the military.

2. Highway Interchange

Two design concepts have been forwarded by the engineering team to address the safety and connectivity issues identified at the intersection of the Richardson and Old Richardson Highways: A) the flyover concept and B) the modified diamond concept.

Both design concepts improve traffic safety along the mainline, reduce vehicle delay, and accommodate the planned north side pathway. Additionally, both design concepts would improve roadway operations by eliminating the two primary vehicle conflict points. One major difference between the two design concepts is the level of future access provided to Fort Wainwright.

1. Flyover design concept

The northbound Richardson Highway lanes would be reconstructed to parallel the existing southbound lanes to provide space for the new exit ramp within the existing ROW, which would cross over the mainline with a bridge. Over height vehicles could bypass the overcrossing utilizing the interchange ramps. If in the future, Fort Wainwright were to require an additional access point at the interchange, this concept would maintain the degree of access as is present at the existing 3-Mile Gate (right-in, right-out access to northbound highway).

2. Modified diamond design concept

The northbound Richardson Highway lanes would be realigned into the existing median to parallel the existing southbound lanes; both the northbound and southbound mainline lanes would be elevated over the northbound exit ramp with a bridge. Over height vehicles would not have to reroute from the mainline to pass through the MP 359 area. The Old Richardson Highway would be extended under the elevated Richardson Highway to connect to the

Dailroad Orada Constant Casility - Transportation & Dublia Casilitian

Dickordson Lichwey MD 250 Interchange and Deilroad Crede Concreted Facility northbound ramps. Along with the reconstructed northbound exit ramp, a new northbound entrance ramp would be added. Any future Fort Wainwright access would be accommodated by a full degree of access, with only a minor grade adjustment for the southbound entrance ramp.

PROJECT TIMELINE

	2019	2020-2021	2022-2023
Milestone			
Environmental & Preliminary Design	1		
Final Design			
Construction			

Attachment 7 Fairbanks Daily News-Miner Ad

AFFIDAVIT OF PUBLICATION

SS.

UNITED STATES OF AMERICA STATE OF ALASKA FOURTH DISTRICT

Before me, the undersigned, a notary public, this day personally appeared <u>Jenny Nance</u>, who, being first duly sworn, according to law, says that he/she is an Advertising Clerk of the Fairbanks Daily News-Miner, a newspaper (i) published in newspaper format, (ii) distributed daily more than 50 weeks per year, (iii) with a total circulation of more than 500 and more than 10% of the population of the Fourth Judicial District, (iv) holding a second class mailing permit from the United States Postal Service, (v) not published primarily to distribute advertising, and (vi) not intended for a particular professional or occupational group. The advertisement which is attached is a true copy of the advertisement published in said paper on the following day(s):

December 26, 2018

January 6, 16, 2019	9
Jacobs	Acct # 241376
Ad # 40536956	Rich Hwy MP 359
15" Ad	

and that the rate charged thereon is not excess of the rate charged private individuals, with the usual discounts.

112

Subscribed and sworn to before me on this $\frac{17}{10}$ day

Jan 19 20

of

Notary Public in and for the State Alaska.

My commission expires _____ Dec. 7, 2021

Attachment 8 Online Public Notice

Notice of Intent to Begin Engineering and Environmental Studies... Page 1 of 2

Notice of Intent to Begin Engineering and Enviromental Studies

Alaska Department of Transportation and Public Facilities Notice of Intent to

Begin Engineering and Environmental Studies:

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project No: Z607340000

The Alaska Department of Transportation and Public Facilities (DOT&PF) has assumed the responsibilities of the Federal Highway Administration under 23 U.S.C. 327 and is soliciting comments and information on a proposal to construct a new interchange at the intersection of the Richardson and Old Richardson Highways and grade-separate the existing at-grade railroad crossing near MP 359 in Fairbanks.

The proposed work would include:

- · An interchange at the intersection of the Richardson Highway and the Old Richardson Highway;
- · A railroad grade separated facility near MP 359;
- · Removal of the existing Richardson Highway at-grade southbound left-turn intersection;
- Installation of new bridges, retaining walls, guardrails, lighting, striping, and signage; and,
- · Roadside drainage improvements and utility relocations.

This proposed project will comply with Section 106 of the National Historic Preservation Act; Executive Orders: 11990 (Wetlands Protection), 11988 (Floodplain Protection), 12898 (Environmental Justice), Clean Air Act, Clean Water Act, Fish and Wildlife Coordination Act, and U.S. DOT Act Section 4(f).

Construction of the proposed project is anticipated to begin in 2022. To ensure that all possible factors are considered, please provide written comments to the following address by January 25, 2019:

Brett Nelson, Regional Environmental Manager Alaska Department of Transportation and Public Facilities 2301 Peger Road Fairbanks, AK 99709

Or you can comment on line to today at: http://dot.alaska.gov/nreg/rich359/

If you have any questions or require additional information, please contact Colleen Ackiss, P.E., Project Manager, at 451-5179.

It is the policy of the DOT&PF that no person shall be excluded from participation in, or be denied benefits of, any and all programs or activities we provide based on race, religion, color, gender, age, marital status, ability, or national origin, regardless of funding source including Federal Transit Administration, Federal Aviation Administration, Federal Highway Administration and State of Alaska Funds.

The DOT&PF complies with Title II of the Americans with Disabilities Act of 1990. Individuals with a hearing impairment can contact DOT&PF at our Telephone Device for the Deaf (TDD) at (907) 269-0473.

Notice of Intent to Begin Engineering and Environmental Studies... Page 2 of 2

Attachments, History, Details

Attachments Alaska_MP359ConceptualMap-02.pdf

Revision History

Created 1/2/2019 2:48:44 PM by vzboyd Modified 1/2/2019 3:08:23 PM by vzboyd

Details

Department: Category: Sub-Category: Location(s): Project/Regulation #:

Transportation and Public Facilities Public Notices

Northern Region Z607340000

Publish Date: Archive Date: 1/2/2019 1/26/2019

Events/Deadlines:

tle	Status	Publish Date	Archive Date	Last Modified	Comments	Actions
otice of Intent Tok Cutoff MP 38-50 Rehabilitation	Active	1/28/2019	2/11/2019	1/28/2019	0	
Dice of Intent to Begin Engineering and Environmental Studies	Archived	1/2/2019 Grade, S	1/26/2019	1/2/2019	$\left(\begin{array}{c} 0 \end{array} \right)$	
stice of Proposed Vacation of a Portion of Highway Right of Way	Archived	12/24/2018	1/29/2019	12/24/2018	0	
tice of Intent Nulato Airport Access Road Improvements Project	Archived	12/10/2018	1/11/2019	12/10/2018	0	
blic Open House North Pole Street Lighting Standardization and provements	Archived	11/2/2018	12/6/2018	10/10/2018	0	
rthern Region Deep Culverts Stage III Project-Notice of Proposed de nimis Section 4(f) Finding	Archived	11/1/2018	12/7/2018	11/1/2018	_0	
tice of Intent Richardon Highway MP 18-24 Resurfacing	Archived	10/30/2018	11/16/2018	10/30/2018	0	
quest for Comments Alaska Highway MP 1235-1268 Rehabilitation	Archived	10/30/2018	11/23/2018	10/30/2018	0	_1
blic Notice Whitshed Road and Pedestrian Improvements	Archived	10/22/2018	11/2/2018	10/22/2018	0	1
en House Old Richardson Highway Intersection Improvements	Archived	10/22/2018	11/30/2018	10/22/2018	σ	
blic Open House Airport Way/Steese Expressway Interchange Project	Archived	9/28/2018	10/26/2018	10/17/2018	1	
ntice of Intent Richardson Highway MP 148-173 Reconstruction	Archived	9/18/2018	10/19/2018	9/18/2018	<u>o</u>	
tice of Intent to Northern Region River Encroachment Repairs- Irdova Eyak Lake Road	Archived	7/31/2018	8/15/2018	7/30/2018	0	
blic Open House Airport Way West Improvements	Archived	6/29/2018	7/29/2018	6/29/2018	0	
rpose & Need State Request for Public Comment-Steese pressway/Johansen Expressway Interchange	Archived	5/30/2018	6/15/2018	5/30/2018	0	
blic Meeting-Richardson Highway MP 159-173 Reconstruction	Archived	5/18/2018	6/15/2018	5/18/2018	0	
en House Yankovich Rd/Miller Hill Rd Reconstruction and Multi-Use th	Archived	4/29/2018	6/5/2018	5/3/2018	_1_]	
blic/Planning Meeting Nulato Airport Access Road Realignment	Archived	4/23/2018	5/14/2018	4/23/2018	0	
pen House St. Mary's Airport Improvements	Archived	4/12/2018	5/18/2018	4/10/2018	0	1
blic Meeting Northern Region Deep Culverts Stage III	Archived	4/6/2018	5/18/2018	4/2/2018	0	
nena River Walk Stage III, Segment I- Public Open House	Archived	3/14/2018	4/23/2018	3/14/2018	1	
blic Meeting Holy Cross Airport Resurfacing and Lighting habilitation Project	Archived	11/29/2017	1/10/2018	11/29/2017	0	
blic Meeting White Mountain Airport Resurfacing and Lighting habiliation	Archived	11/29/2017	1/13/2018	11/29/2017	0	1
otice of Intent Carlson Center Motor Plug Ins, Fairbanks and North le Libraries and Big Dipper Motor Plug Ins	Archived	10/12/2017	11/1/2017	10/12/2017	0	
tice of Intent/Request for Public Comments-Northern Region croachment Repairs	Archived	9/27/2017	10/6/2017	9/27/2017	0	
otice of Intent/Request for Public Comments-Parks Highway MP 356- 52 Resurfacing	Archived	9/27/2017	10/15/2017	9/27/2017	0	
en House HSIP: Richardson Highway MP 351 Interchange	Archived	9/8/2017	10/31/2017	9/8/2017	0	_
otice of Intent McCarthy Road MP 27 Chokosna Bridge #1193 placement	Archived	8/28/2017	9/29/2017	8/28/2017	2	
otice of Intent Richardson Highway MP 65-80 Rehabilitation	Archived	8/28/2017	9/29/2017	8/28/2017	0	1
otice of Intent Aurora Drive Noyes Slough Bridge #0209 Replacement	Archived	8/24/2017	9/29/2017	8/24/2017	σ	

Attachment 9 Agency Scoping Documentation

9A- Agency Scoping Letter and Distribution List 9B- Agency Comments and Responses

From:	Nelson, Brett D (DOT)
Sent:	Friday, February 08, 2019 11:08 AM
То:	Aaron Schutt - Doyon, LTD (admin@doyon.com); Bailey, Meadow P (DOT);
	Benjamin.N.Soiseth@usace.army.mil; Donald Galligan; Frye, Caitlin S (DOT); Heil, Cynthia
	L (DEC); Henszey, Bob USF&WS Kellen Spillman; Molly Vaughan
	(vaughan.molly@epamail.epa.gov); Nancy Durham; Sonafrank, Nancy B (DEC); McCabe,
	Gene C (DEC); Fish, James T (DEC); Leinberger, Dianna L (DNR); Fox, Jackson G (DOT);
	Schacher, Daniel L (DOT); Weinberger, John S CIV USARMY IMCOM PACIFIC (USA)
Cc:	Ackiss, Colleen M (DOT); Fischer, David K (DOT); Nelson, Brett D (DOT); Gamza, Thomas
	A (DOT)
Subject:	Richardson Highway MP 359 Grade Separated Facility Agency Scoping
Attachments:	RichHwyMP359_AgencyScoping_Form327_020818.pdf

Hello,

The attached scoping letter and accompanying figure are to provide you with an overview of the proposed project, Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734). Please review and return any comments you have on the project so that we may evaluate and consider them in our environmental document.

Thank you for your efforts in reviewing and responding, Brett

Brett Nelson Northern Region Environmental Manager Alaska Dept. of Transportation & Public Facilities 2301 Peger Road / Fairbanks, AK 99709 Office (907)451-2238 Fax (907)451-5126

Department of Transportation and Public Facilities

NORTHERN REGION Design and Engineering Services Preliminary Design and Environmental

> 2301 Peger Road Fairbanks, AK 99709-5316 Moln: 907-451-2237 TDD: 907-451-2363 FAX: 907-451-5126

AGENCY SCOPING REQUEST FOR EARLY COORDINATION

Project Name: Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project Number: Z607340000/ A024033 Project Website: <u>http://dot.alaska.gov/nreg/rich359/</u> Comments Due Date: February 22, 2019 Anticipated Level of Documentation: Categorical Exclusion

Dear Agency Staff:

The Alaska Department of Transportation and Public Facilities (DOT&PF) is proposing to reconstruct the Richardson Highway near Milepost 359. The work would include an interchange at the intersection of the Richardson Highway and the Old Richardson Highway, a railroad grade separated facility near MP 359, roadside hardware, drainage improvements, and utility relocations.

We are soliciting your comments on a proposed project. Please comment on the project including your knowledge of resources in the project under the jurisdiction of your agency or organization and the potential need for permits and approvals from your agency or organization. To ensure that your comments are addressed in the project's design and environmental documentation, please refer to the project by the above name or number, and send or e-mail your comments to:

Brett Nelson/ Northern Region Environmental Manager Alaska Department of Transportation and Public Facilities 2301 Peger Road Fairbanks, AK 99709 Email: brett.nelson@alaska.gov Phone: 907-451-2238

Britt ONel

28119 Date

Brett Nelson/Regional Environmental Manager

Figures: Figure 1. Study Area Map

"Keep Alaska Moving through service and infrastructure."

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by FHWA and DOT&PF.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Federal Project No. A024033 State Project No. Z607340000

- 2 -

I. Purpose and Need of Project:

The highway supports military operations at both Fort Wainwright Army and Eielson Air Force bases, Richardson Highway and is therefore considered part of the National System of Interstate Defense Highways and the Strategic Highway Network (STRAHNET). The proposed project supports the continued transition of the segment of the Richardson Highway between Fairbanks and the Eielson Air Force Base to a controlled-access freeway (FMATS Policy Committee resolution, 1984). Studies indicate that safety improvements are needed due to the frequency and potential severity of crashes at highway speeds (Kittleson and Associates, June 2017).

Ultimately, the interchange concepts would eliminate two primary vehicle conflict points that do not meet driver expectations for a freeway facility: the at-grade railroad crossing and the at-grade northbound exit intersection. Removing the at-grade railroad crossing would also improve operations by reducing delays. Replacing the at-grade northbound exit with an interchange would allow northbound traffic to access the Richardson Highway from the Old Richardson. Additionally, the Richardson Highway is a critical freight corridor and is a part of the National Highway Freight Network (NHFN), connecting Fairbanks and North Pole with communities in eastern Alaska, Canada and the contiguous 48 states. This road has a large percentage of truck traffic and is designated as an official route for long-combination vehicles (17 AAC 25.014). With the industrial district to the southwest, there are trucks that travel to and from the Old Richardson. Freight mobility would be improved by new interchange ramps and considerations for over height and overweight trucks.

II. Project Description and Location:

The proposed project location is milepost 359 of the Richardson Highway. The Richardson Highway is bordered by federal military land to the north and south, with private, mostly industrial land to the south west.

The project proposes to construct an interchange at the Richardson Highway/Old Richardson Highway intersection. This would remove the existing intersection of southbound Richardson Highway and the off ramp to the Old Richardson Highway. It would reconstruct the northbound exit ramp as a grade separation. Additionally, bridges would be constructed for the interchange and railroad grade separation. The project would also replace the existing at-grade railroad crossing and signal infrastructure with a new grade separated bridge that raises the Richardson Highway mainline over the railroad.

Other minor work includes: pavement markings, signage, drainage improvements, highway illumination, and potential reconstruction for a planned (but not yet constructed) separated pathway. This separated pathway concept is part of the Richardson Highway MP 356-362 Bicycle and Pedestrian Facility project, which will construct a new pathway along the northern Richardson Highway right-of-way line. The future potential exists for the construction of new ramp connections to the northbound entrance from and the southbound exit to the Old Richardson Highway. This would accommodate future access needs for Fort Walnwright. In addition, troop access will be provided to connect Ft. Wainwright lands located both north and south of the Richardson Highway.

III. Agency Review (TO BE COMPLETED BY THE RESOURCE OR REGULATORY AGENCY):

- 1. Responding Agency:
- 2. Is the information provided herein consistent with agency knowledge?
- 3. Does this scoping request adequately identify resources and permit needs under your agency's jurisdiction?

- 3 -

Please provide any additional project-related comments, recommendations, or resource information below:

IV. Anticipated Environmental Consequences

A. 1	Right-of-Way (ROW)	
1.	Additional ROW required.	NO
2.	Estimated number of parcels impacted.	N/A
3.	Property transfer from local, state, or federal agency.	NO
4.	Business or residential relocations.	NO
5.	Property acquisition from Tribe or ANCSA Corporation.	N/A

6. Describe:

The project footprint is completely within the existing right-of-way. Both proposed interchange concepts use existing right-of-way and avoid the need for acquisition of adjacent private or federal land.

B. <u>Socio-Economic</u>

1.	Project could affect community cohesion, neighborhoods, or other community facilities.	NO
2.	Project could affect economic development, such as established area businesses.	NO
3.	Project could affect travel patterns and accessibility.	YES
4.	Project could disproportionately affect minorities or disadvantaged persons.	NO
5.	Project will result in adverse economic impacts.	NO

6. Describe:

There would be no negative effects to neighborhoods or community. The proposed project would benefit overall travel patterns and accessibility by reducing delays at the railroad crossing and eliminating the need for out-of-direction travel patterns for northbound access from the Old Richardson to the Richardson Highway. Both concepts would improve freight mobility with new interchange ramps and provisions for over height and overweight trucks. Improved mobility for freight has the potential to contribute to economic growth in the adjacent industrial areas that utilize the corridors. The proposed project would not have adverse economic impacts.

C. Land Use and Transportation Plans

1.	Project is consistent with land use plans.	YES
2.	Project is consistent with transportation plans.	YES

3. Describe:

The proposed project would be consistent with existing transportation and land use plans and will not introduce indirect or cumulative effects. The 2018-2021 STIP includes the Railroad Grade Separation Project (#28069) and the non-motorized pathway (#2130). The interchange is a project in the approved 2040 FMATS Metropolitan Transportation Plan (#VLR-20).

D. <u>Historic Properties</u>

- National Register listed eligible/potentially eligible historic properties in project area.
- 2. Places of traditional religious or cultural importance to Tribes are present in the project area. N/A
- Historic Properties survey may be required to identify if sites are present.

N/A

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Federal Project No. A024033 State Project No. Z607340000

February 8, 2019

N/A

- 4 -

Possible adverse effect on historic properties.

5. Describe:

There are no historic properties or places of traditional religious or cultural imprtance to Tribes in the vicinity of the proposed project, therefore there would be no impacts.

E. Fish and Wildlife Impacts

Describe:

1.	Project could affect anadromous or resident fish species.	NO
2.	Problem fish pass culverts within the project area.	NO
з.	Essential Fish Habitat (EFH) present in the project area.	NO
4.	Project in area of high wildlife/vehicle accidents.	NO
5.	Project could affect migration corridors or segment habitat.	NO
6.	Eagle nesting tree(s) or ledge(s) in the project area.	NO
7.	Construction activities could affect migratory bird nests.	YES

There are no known occurances of fish or wildlife species documented directly within the project area. There is no suitable habitat in the project area. Suitable habitat for migratory bird species exists at the lakes and ponds located in the industrial area to the south west.

The following migratory bird species were identified (based on liberal estimates) as possibly occurring within the 10km grid cells that intersect the project area. The birds listed are of particular concern either because they 1) occur on the USFWS Birds of Conservation Concern (BCC) list or 2) otherwise warrant special attention due to vulnerability of the species.

 BCC Rangewide: American Golden Plover (May 20 to Aug 15), Hudsonian Godwit (May 15 to Jul 31), Lesser Yellowlegs (May 1 to Aug 15), Olive-sided Flycatcher (May 20 to Aug 31), Whimbrel (May 10 to Aug 20)
 Non-BCC Vulnerable: Bald Eagle, Golden Eagle

Standard conservation measures for transportation activities are recommended in order to avoid impacts to migratory birds that incidentally may breed in the area (e.g., survey tall grasses for nesting sites). Such conservation measures would include:

All vegetation removal, trimming, and grading of vegetated areas would be scheduled outside of the peak bird breeding season to the maximum extent practicable. No mechanized vegetation clearing will be allowed from May 1-July 15. If the proposed project activities cannot occur outside the bird nesting season, surveys would be conducted no more than five days prior to scheduled activity. If any active nests or breeding bird behavior are detected within the area of impact during surveys, no vegetation removal activities should be conducted until nestlings have fledged or the nest fails or breeding behaviors are no longer observed. If the activity must occur, establish a buffer zone around the nest and no activities will occur within that zone until nestlings have fledged and left the nest area.

F. Threatened and Endangered (T&E) Species

L.	Listed T&E species present.	NO
2.	T&E species migrate through the project area.	NO
3.	Proposed or Candidate species present in project area.	NO

4

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Federal Project No. A024033 February 8, 2019 State Project No. Z607340000 . 5 . Designated Critical Habitat in the project area. NO 5. Describe: There are no known occurances of listed threatended or endangered species within the project area. G. Wetlands and Waterbodies 1. Project involves Waters of the U.S. and/or wetlands. NO Wetlands survey/delineation may be needed. NO USACE authorization anticipated. NO 4. Rough estimate on acreage impacted. NO U.S. Coast Guard bridge permit anticipated. NO 6. Designated Wild & Scenic River in project area. NO 7. Describe: The proposed project would not impact wetlands or waterbodies.

H. Invasive Species

1. Known invasive species infestation in project area.

YES

2. Describe:

Among the 16 non-native species present in the project vicinity, five have a USDA invasiveness rank of greater then 70 and are may pose an invasive threat due to the hight propensity for spread to areas outside the project area (Alaska Exotic Plant Information Clearinghouse). Although the documented density and extent of these populations are limited, cost-efficient mitigative measures (e.g., wash equipment) are recommended to minimize the transport of propagules off-site. Prevention measures to reduce the risk of introducing additional speicies would be the use of certified weed-free seed mixes for revegetation.

Below is a list of the non-native species in the vicinity and the associated USDA invasiveness ranking: Lepidium densiflorum Schrad. (common pepperweed - 25); Plantago major (common plantain - 44); Hieracium umbellatum (narrowleaf hawkweed - 51); Crepis tectorum (narrowleaf hawksbeard - 56); Trifolium hybridum (alsike clover - 57); Taraxacum officinale (common dandelion - 58); Elymus repens (quackgrass - 59); Bromus inermis (smooth brome - 62); Hordeum jubatum (foxtail barley - 63); Medicago sativa (yellow alfalfa - 64); Linaria vulgaris (butter and eggs - 69); Sonchus arvensis (field sowthistle - 73); Vicia cracca (bird vetch - 73); Caragana arborescens (Siberian peashrub - 74); Prunus padus (European bird cherry - 74); Melilotus albus (white sweetclover - 81)

1. Hazardous Waste/Contaminated Sites 1. Known or potentially contaminated sites along project corridor. NO 2. Existing and/or proposed ROW is contaminated. NO 3. Potential for encountering hazardous waste during construction. NO 4. Describe: NO

There are no known contaminated sites documented in the area of the proposed project.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Federal Project No. A024033 State Project No. Z607340000

February 8, 2019

NO

YES

NO

J. Air Quality

1. Project is located in an air quality nonattainment or maintenance area (i.e. - CO or PM-2.5). YES

- 6 -

- 2. Listed in the Transportation Improvement Plan (TIP).
- 3. Project exempt from air quality analysis (Table 2 and Exempt Projects). SEE BELOW
- 4. Describe:

The project is within the boundaries of a Non-Attainment area for PM2.5 and a Maintenance Area for Carbon Monoxide (See Attachment 7A) The pedestrian facilities and the railroad crossing improvements are exempt in accordance with the Clean Air Act and Transportation Conformity Regulations. The 2018-2021 STIP includes the Railroad Grade Separation Project (#28069) and the non-motorized pathway (#2130). The interchange is a project in the approved 2040 FMATS Metropolitan Transportation Plan (#VLR-20). Based on this, the requirements for the Transportation Conformity Rule are met (See Attachment 7B). For project level conformity, the project does not include any signalized intersections, and therefore is exempt from CO hotspot analysis. The project does not meet the requirements for a PM2.5 hotspot analysis because it does not have a significant number of diesel vehicles (estimated at 7% in project traffic analysis) and it would not affect an intersection operation at Level of Service D, E or F.

K. Floodplains

1.	Project encroaches (including material sites) into a 100-year floodplain.	NO
	Project involves a regulatory floodway.	NO
	Project is located within an area protected by local flood hazard ordinances.	NO
	Flood hazard permit is required from local government.	NO
	이 사람이 많은 것 같은 것	

5. Describe:

The proposed project area falls within areas of "minimal flood risk" or "reduced flood risk" due to the presence of a levee and therefore avoids, to the extent possible, any long and short term adverse impacts associated with the modification of a floodplain.

L. <u>Noise</u>

- The project is located on new location, would result in substantial changes in vertical or horizontal alignment, or would increase the number of through lanes?
- There are noise-sensitive receivers/land uses adjacent to the proposed project?
- 3. Describe:

The Activity Categories present in the vicinity of the project area include both B (1,200 ft - 2,000 ft) and F (10,000 ft -15,000 ft). Vertical alteration did not meet criteria described in the ADOT&PF Noise Policy (2018) for further noise analysis. Despite the adjacent noise-sensitive recievers/land use and vertical alteration, the proposed project does not meet the federal and state threshold requirements for preparing a quantitative highway noise impact and mitigation analysis. This determination was made for both the highway interchange and the grade-separated railroad overpass.

- M. Water Quality
 - 1. Project could involve a public or private drinking source. NO
 - Project could result in a discharge of storm water to Waters of the U.S.

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Federal Project No. A024033 State Project No. Z607340000

February 8, 2019

З.	Project could affect a designated impaired water body.	NO
4.	Storm water discharges to a Municipal Separate Storm Sewer System (MS4).	YES
5.	Runoff may mlx with discharges from an APDES permitted industrial (MSGP) facility.	YES
	Excavation dewatering is anticipated within 1,500 feet of a contaminated site.	NO
100	그 같아. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 말 같아요. 그는 것 같아요. 그는 것 같아요. 가지 않아요. 그는 것 않아요. 그는 것 같아요. 그는 것 않아요. 그는 것 같아요. 그는 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 ? 그는 그는 ? 그는 그는 그는 ? 그는 그는 그는 요. 그는 그는 ? 그는 그는 ? 그는 그는 그는 ? 그는 그는 그	

4

7. Describe:

The project is located within the FNSB MS4 boundary and the contractor will provide a SWPPP to the FNSB for review.

N. Section 4(f)/6(f)

1.	There would be a "use" of land from 4(f) properties.	
2.		NO
3.	the proposed decidit.	N/A
4.		
	For the proposed project, there would be no 4(f)/6(f) involvement.	
о.	Material Source(s) and Staging Areas	
1.	Potential sites needed for project have been identified.	NO
2.	Describe: Materials are expected to come from sites in the Fairbanks area.	
Р.	Permits and Authorizations	
1.	USACE, NWP or IP:	N/A
2.	USCG, Bridge Permit:	N/A
з.	ADF&G, Fish Habitat Permit:	NO
4.	Material Site(s) Sales Agreements/Permits:	N/A
5.	Floodplain Permit:	N/A
6.	ADEC, 401 Cert.:	NO
7.	ADEC, Storm Non-domestic Storm Water Disposal Plan Approval:	YES
8.	APDES, CGP:	YES
9.	ADNR, Land Use Permit:	NO
10.	Borough/City, Development Permit:	NO
	ADEC, Excavation Dewatering Permit:	N/A
	ADNR, Temp. Water Use Permit:	NO
	ADF&G, Special Area Permit:	NO
	Other(s):	NO.

Agency Comment & Response Summary Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project No. Z607340000/0A24033

The following document summarizes the agency scoping comments received by email from 2/8/2019 to 3/12/2019.

Agency	Comment	Response
FNSB Community Planning Flood Plain Administrator	A Split-Zone Floodplain Permit and a Non-Structural Floodplain Permit are needed.	None needed.
FMATS	The project is included in the recently approved 2045 MTP (Project #MR-52) and Air Quality Conformity Determination, which are valid for a period of 4 years starting January 30, 2019.	None needed.
U. S. Fish and Wildlife Service (Service)	 There are no threatened or endangered species in the project area. Preparation of a Biological Assessment or further consultation regarding the project is not necessary at this time. The Service is not aware of any eagle nests in the proposed project area. If an eagle nest is discovered within a half-mile of the project site, contact the Service for further assistance. Concur with avoiding land-disturbing activities from May 1 through July 31 and proposed pre-construction nest surveys in the project area to avoid impacts to migratory birds. Appreciate the plans to manage the introduction and spread of invasive species during project implementation. 	None needed.

FNSB Mayor Ward	Concerned that the current design is not consistent with the following plans: Fairbanks Area Rail Line Relocation Project, FNSB Comprehensive Plan and the Alaska State Rail Plan. (This letter is very similar to the one sent during the On-Line Public Open House commenting period.)	NR Director Anderson discussed the project and comments with Mayor Ward prior to the DOT&PF Engineering Manager responding. A formal letter response was sent identifying how the current design elements are consistent with the three plans. (See the On-line Public Open House documents for the letter.)
USAG Alaska IMFW-PWE NEPA and Water Program	The multi-use path will need to be separate from the troop crossing; they should be designed at different levels so that path users cannot access the small arms range via the troop crossing.	None needed.
DEC Air Quality Division	DEC agrees that the project is exempt from project-level conformity under 40 CFR 93.126 but recommends that an interagency consultation take place to confirm the exemption and ensure no conformity determination, hot spot analysis, or project-level conformity analysis is required.	DOT&PF coordinated with the FMATS Director to be placed on the agenda for the next interagency consultation meeting.
FMATS Interagency Consulta	tion Meeting Summaries	
4-10-2019	Meeting Summary	
5-8-2019	Meeting Summary	
4-26-2019	DOT&PF Traffic & Safety Air Quality Conformity Memo	

From:Nelson, Brett D (DOT)Sent:Friday, February 08, 2019 1:08 PMTo:Ackiss, Colleen M (DOT)Subject:FW: Richardson Highway MP 359 Grade Separated Facility Agency ScopingAttachments:RichHwyMP359-360_FZMap.pdf

FYI

From: Nancy Durham <NDurham@fnsb.us> Sent: Friday, February 8, 2019 11:41 AM To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov> Subject: RE: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Brett,

There is special flood hazard areas in the project area (see attached map), which requires a Split-Zone Floodplain Permit. If you are doing any development around MP359 on the south side of the Richardson Highway including the railroad track area, you will need a Non-Structural Floodplain Permit as this area is located in Flood Zone A.

Kind Regards,

Nancy Durham, MURP, CFM Flood Plain Administrator FNSB Community Planning <u>ndurham@fnsb.us</u> (907) 459-1263

** Any property can flood! Flood insurance is recommended.

From: Nelson, Brett D (DOT) <<u>brett.nelson@alaska.gov</u>>

Sent: Friday, February 8, 2019 11:08 AM

To: Aaron Schutt - Doyon, LTD (admin@doyon.com) <admin@doyon.com>; Bailey, Meadow P (DOT)
<meadow.bailey@alaska.gov>; Benjamin.N.Soiseth@usace.army.mil; Donald Galligan <DGalligan@fnsb.us>; Frye, Caitlin S (DOT) <caitlin.frye@alaska.gov>; Heil, Cynthia L (DEC) <cindy.heil@alaska.gov>; Henszey, Bob USF&WS
<Bob Henszey@fws.gov>; Kellen Spillman <KSpillman@fnsb.us>; Molly Vaughan (vaughan.molly@epamail.epa.gov)
<vaughan.molly@epamail.epa.gov>; Nancy Durham <NDurham@fnsb.us>; Sonafrank, Nancy B (DEC)
<ianacy.sonafrank@alaska.gov>; Leinberger, Dianna L (DNR) <dianna.leinberger@alaska.gov>; Fish, James T (DEC)
<jackson.fox@alaska.gov>; Schacher, Daniel L (DOT) <daniel.schacher@alaska.gov>; Weinberger, John S CIV USARMY
IMCOM PACIFIC (USA) <john.s.weinberger.civ@mail.mil>
Cc: Ackiss, Colleen M (DOT) <colleen.ackiss@alaska.gov>; Fischer, David K (DOT) <david.fischer@alaska.gov>; Nelson, Brett D (DOT)

to DOT)

to DOT)
stertt.nelson@alaska.gov>; Gamza, Thomas A (DOT) <thomas.gamza@alaska.gov>

Subject: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Hello,

The attached scoping letter and accompanying figure are to provide you with an overview of the proposed project, Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734). Please review and return any comments you have on the project so that we may evaluate and consider them in our environmental document.

Thank you for your efforts in reviewing and responding, Brett

Brett Nelson Northern Region Environmental Manager Alaska Dept. of Transportation & Public Facilities 2301 Peger Road / Fairbanks, AK 99709 Office (907)451-2238 Fax (907)451-5126

RichHwyMP359-360 Project Area Flood Zone Map

From:Nelson, Brett D (DOT)Sent:Friday, February 08, 2019 1:10 PMTo:Ackiss, Colleen M (DOT)Subject:FW: Richardson Highway MP 359 Grade Separated Facility Agency ScopingAttachments:FMATS Air Conformity Analysis Fox Gehrke Garcia-Aline 013019.pdf

FYI

From: Fox, Jackson G (DOT) <jackson.fox@alaska.gov>
Sent: Friday, February 8, 2019 12:53 PM
To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov>
Subject: RE: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Brett,

Our new 2045 MTP was adopted on December 19, and on January 30 we received approval of the Air Quality Conformity Determination from FHWA and FTA. See letter attached. The Richardson Hwy MP 359 project was included in both our 2045 MTP (Project #MR-52) and Air Quality Conformity Determination, which are valid for a period of 4 years starting January 30, 2019.

Thanks, Jackson

From: Nelson, Brett D (DOT) < brett.nelson@alaska.gov>

Sent: Friday, February 8, 2019 11:08 AM

To: Aaron Schutt - Doyon, LTD (admin@doyon.com) <admin@doyon.com>; Bailey, Meadow P (DOT)
<ameadow.bailey@alaska.gov>; Benjamin.N.Soiseth@usace.army.mil; Donald Galligan DGalligan@fnsb.us; Frye, Caitlin
S (DOT) <<u>caitlin.frye@alaska.gov</u>>; Heil, Cynthia L (DEC) <<u>cindy.heil@alaska.gov</u>>; Henszey, Bob USF&WS
<<u>Bob Henszey@fws.gov</u>>; Kellen Spillman <<u>kspillman@fnsb.us</u>>; Molly Vaughan (<u>vaughan.molly@epamail.epa.gov</u>)
<<u>vaughan.molly@epamail.epa.gov</u>>; Nancy Durham <<u>ndurham@fnsb.us</u>>; Sonafrank, Nancy B (DEC)
<<u>nancy.sonafrank@alaska.gov</u>>; McCabe, Gene C (DEC) <<u>gene.mccabe@alaska.gov</u>>; Fish, James T (DEC)
<<u>james.fish@alaska.gov</u>>; Leinberger, Dianna L (DNR) <<u>dianna.leinberger@alaska.gov</u>>; Fox, Jackson G (DOT)
<<u>jackson.fox@alaska.gov</u>>; Schacher, Daniel L (DOT) <<u>daniel.schacher@alaska.gov</u>>; Weinberger, John S CIV USARMY
IMCOM PACIFIC (USA) <<u>john.s.weinberger.civ@mail.mil</u>>
Cc: Ackiss, Colleen M (DOT) <<u>colleen.ackiss@alaska.gov</u>>; Fischer, David K (DOT) <<u>david.fischer@alaska.gov</u>>; Nelson,
Brett D (DOT)

Stett.nelson@alaska.gov>; Gamza, Thomas A (DOT) <<u>thomas.gamza@alaska.gov</u>>

Subject: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Hello,

The attached scoping letter and accompanying figure are to provide you with an overview of the proposed project, Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734). Please review and return any comments you have on the project so that we may evaluate and consider them in our environmental document.

Thank you for your efforts in reviewing and responding, Brett

Brett Nelson Northern Region Environmental Manager Alaska Dept. of Transportation & Public Facilities 2301 Peger Road / Fairbanks, AK 99709 Office (907)451-2238 Fax (907)451-5126

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL HIGHWAY ADMINISTRATION ALASKA DIVISION 709 W. 9TH STREET, ROOM 851 P.O. BOX 21648 JUNEAU, ALASKA 99802-1648

FEDERAL TRANSIT ADMINISTRATION 915 SECOND AVENUE, SUITE 3142 SEATTLE, WASHINGTON 98174

January 30, 2019

Mr. Jackson Fox Executive Director Fairbanks Metropolitan Area Transportation System 2301 Peger Road Fairbanks, AK 99709

In Reply Refer To:

Subject: FMATS 2045 Metropolitan Transportation Plan Air Quality Conformity

Dear Mr. Fox:

The air quality conformity analysis for the Fairbanks Metropolitan Area Transportation System (FMATS) 2045 Metropolitan Transportation Plan (MTP) submitted with your letter of January 23, 2019 has been reviewed. We find that:

- Total regional vehicle-related PM 2.5 and NOx precursor emissions for the required analysis years of 2019, 2025,2035, and 2045 are below the applicable motor vehicle emission budgets in the moderate State Implementation Plan (SIP).
- All CO conformity requirements for the limited maintenance plan are met.
- Interagency consultation was conducted in accordance with Federal requirements.

The Federal Highway Administration and Federal Transit Administration approve the conformity determination for the FMATS 2045 Metropolitan Transportation Plan.

If you have any questions, please contact Mr. John Lohrey, FHWA Transportation Planner at (907) 586-7428, or Mr. Ned Conroy, FTA Community Planner at (206) 220-4318.

Sincerely,

Sandra A. Garcia-Aline Division Administrator Federal Highway Administration LINDA M GEHRKE Digitally signed by LINDA M GEHRKE Date: 2019.01.30 11:58:10 -08'00'

Linda M. Gehrke Regional Administrator Federal Transit Administration

Electronically cc: Ned Conroy, FTA Judy Chapman, AK DOT&PF Northern Region

From:Nelson, Brett D (DOT)Sent:Friday, February 22, 2019 7:26 PMTo:Ackiss, Colleen M (DOT)Subject:Fwd: Scoping Richardson Highway MP 359 Interchange and RR Grade - USFWS
Comments

FYI - I haven't heard back from Ft Wainwright yet. will be outMonday and Tuesday.

Brett

Begin forwarded message:

From: "Buncic, Charleen" <<u>charleen_buncic@fws.gov</u>> Date: February 22, 2019 at 5:11:24 PM AKST To: "Nelson, Brett D (DOT)" <<u>brett.nelson@alaska.gov</u>> Subject: Scoping Richardson Highway MP 359 Interchange and RR Grade - USFWS Comments

Dear Brett,

This email constitutes the U.S. Fish and Wildlife Service (Service) response to your request for Agency Scoping on Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project (Project No. Z607340000/A024033). The Service is specifically responding to the three questions in Section III of the scoping packet.

1. Responding Agency: USFWS

2. Is the information provided herein consistent with agency **knowledge?** The information provided in the project overview is consistent with the Service's general knowledge of the project area given the level of detail provided in the scoping packet.

3. Does this scoping request adequately identify resources and permit needs under your agency's jurisdiction? Yes.

<u>Threatened and Endangered Species</u>: There are no threatened or endangered species in the project area, thus the Service does not expect project-related activities to adversely impact listed species. This email constitutes informal consultation under the Endangered Species Act. Preparation of a Biological Assessment or further consultation regarding this project is not necessary at this time.

Eagles and their Nests: The Bald and Golden Eagle Protection Act protects eagles from take, as well as from disturbance to their nests, roosts, and foraging sites. The Service is unaware of any eagle nests in the proposed project area. Ultimately, the project proponent is responsible for preventing disturbance to

eagles. If an eagle nest is discovered within a half-mile of the project site, please contact our office for further assistance.

<u>Migratory Birds</u>: We appreciate the level of detail provided in the scoping packet regarding migratory birds that may be present in the project area, including the conservation status of those birds. We assume ADOT&PF utilized the USFWS IPaC planning tool to obtain this information. For future reference, it would be helpful to cite the data source. We also appreciate ADOT&PF's plans to avoid impacts to migratory birds during the nesting season by avoiding land-disturbing activities from May 1 through July 31 in the project area. This is the the most effective BMP for bird conservation prior to project construction.

Additionally, we appreciate the proposed pre-construction nest surveys, which may help reduce impacts to nesting birds when prior clearing or construction during the nesting season cannot be avoided. Please be aware, adequate buffers for identified nests must be provided, and surveys and buffers will not provide a means to completely avoid loss of nests or young. The Service encourages innovative ideas for conserving birds and their habitat when avoiding impacts during the nesting season is not practical. For your consideration, additional BMPs are provided in our document titled "Nationwide Standard Conservation Measures", which can be found at: <u>https://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures/nationwide-standard-conservation-measures.php</u>

<u>Invasive Species</u>: The Service appreciates ADOT&PF's plans to manage for the introduction and spread of invasive species during project implementation. To ensure on-the-ground knowledge of invasive species management, we recommend project contractors review a free self-paced training course on invasive species control, which can be found at <u>http://weedcontrol.open.uaf.edu</u>

Thank you for this opportunity to provide early comment. Should you have any questions, please feel free to contact me.

Sincerely,

Charleen Buncic

Charleen Buncic

U.S. Fish and Wildlife Service 101 12th Ave., Room 110 Fairbanks, AK 99701 907.456.0276 907.456.0208 (F)

"Whether you think you can or think you can't, you're right" - Henry Ford

From: Sent: To: Subject: Attachments: Nelson, Brett D (DOT) Friday, March 01, 2019 4:04 PM Ackiss, Colleen M (DOT); Skinner, Alan F (DOT) FW: Richardson Highway MP 359 Grade Separated Facility Agency Scoping DOT Letter 2019.pdf

From: Donald Galligan <DGalligan@fnsb.us> Sent: Friday, March 1, 2019 3:49 PM To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov> Subject: RE: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Brett, please find attached the FNSB's scoping comments for the Richardson Highway 359 Interchange and Railroad Grade Separated Facility Agency Scoping opportunity. We understand that this submittal is 1 week late, however we are already on record for the comments included here, and feel that an error was made when stating that the project as proposed is consistent with local planning. Based on this we wanted to be very judicious with our reply and this created a slight delay in our response.

Thank you for this opportunity to provide comment.

Donald C. Galligan, Jr. AICP | Planner IV—Transportation <u>Fairbanks North Star Borough</u> | Community Planning 907.459.1272 (direct) | 907.459.1260 (department) <u>dgalligan@fnsb.us</u> |

From: Nelson, Brett D (DOT) <<u>brett.nelson@alaska.gov</u>> Sent: Friday, February 8, 2019 11:08 AM

To: Aaron Schutt - Doyon, LTD (<u>admin@doyon.com</u>) <<u>admin@doyon.com</u>>; Bailey, Meadow P (DOT)
<<u>meadow.bailey@alaska.gov</u>>; <u>Benjamin.N.Soiseth@usace.army.mil</u>; Donald Galligan <<u>DGalligan@fnsb.us</u>>; Frye, Caitlin
S (DOT) <<u>caitlin.frye@alaska.gov</u>>; Heil, Cynthia L (DEC) <<u>cindy.heil@alaska.gov</u>>; Henszey, Bob USF&WS
<<u>Bob Henszey@fws.gov</u>>; Kellen Spillman <<u>KSpillman@fnsb.us</u>>; Molly Vaughan (<u>vaughan.molly@epamail.epa.gov</u>)
<<u>vaughan.molly@epamail.epa.gov</u>>; Nancy Durham <<u>NDurham@fnsb.us</u>>; Sonafrank, Nancy B (DEC)
<<u>nancy.sonafrank@alaska.gov</u>>; McCabe, Gene C (DEC) <<u>gene.mccabe@alaska.gov</u>>; Fish, James T (DEC)
<<u>james.fish@alaska.gov</u>>; Leinberger, Dianna L (DNR) <<u>dianna.leinberger@alaska.gov</u>>; Fox, Jackson G (DOT)
<<u>jackson.fox@alaska.gov</u>>; Schacher, Daniel L (DOT) <<u>daniel.schacher@alaska.gov</u>>; Weinberger, John S CIV USARMY
IMCOM PACIFIC (USA) <<u>john.s.weinberger.civ@mail.mil</u>>
Cc: Ackiss, Colleen M (DOT) <<u>colleen.ackiss@alaska.gov</u>>; Fischer, David K (DOT) <<u>david.fischer@alaska.gov</u>>; Nelson,
Brett D (DOT) <<u>brett.nelson@alaska.gov</u>>; Gamza, Thomas A (DOT) <<u>thomas.gamza@alaska.gov</u>>

Hello,

The attached scoping letter and accompanying figure are to provide you with an overview of the proposed project, Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734). Please review and return any comments you have on the project so that we may evaluate and consider them in our environmental document.

Thank you for your efforts in reviewing and responding,

Brett

Northern Region Environmental Manager Alaska Dept. of Transportation & Public Facilities 2301 Peger Road / Fairbanks, AK 99709 Office (907)451-2238 Fax (907)451-5126

Fairbanks North Star Borough

907 Terminal Street P.O. Box 71267 Fairbanks, AK 99707-1267 T.(907)459-1300 F.(907)459-1102

Mayor's Office

March 1, 2019

Brett Nelson State of Alaska Department of Transportation & Public Facilities 2301 Peger Rd Fairbanks, AK 99709

Re Comments on the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Agency Scoping Request.

Dear Mr. Nelson:

The Fairbanks North Star Borough (FNSB) appreciates the opportunity to submit comments regarding the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Agency Scoping request. Please accept these as the official scoping comments from the FNSB Administration.

The FNSB attended the January 24, 2019 Stakeholders Meeting at DOT Northern Region offices including review of the two alternatives that are currently under consideration for further development. At that time the FNSB brought up several concerns about the alternatives presented, and the findings of this Cat Ex document are equally concerning. The FNSB has worked diligently over the last 12 years to ensure that Alaska Railroad (ARRC) projects are planned and developed consistent with the goal of re-routing the ARRC to a southerly alignment around the heart of Fairbanks. This effort began in earnest with a June 25, 2007 MOU between the FNSB and the ARRC (Attached) agreeing in principal to preserving a corridor for future railroad realignment.

Our concern is that the current design for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility is inconsistent with the Fairbanks Area Rail Line Relocation Project, is inconsistent with the FNSB Regional Comprehensive Plan, and is inconsistent with the approved Alaska State Rail Plan.

The project is wrongly identified as consistent with local plans in Section IV Anticipated Environmental Consequences, C Land Use and Transportation Plans, Items 1 and 2. These inconsistencies are identified below. The project as designed is inconsistent with the following sections of the FNSB Regional Comprehensive Plan:

Land Use, Goal 4, Strategy 11, Action C: Pursue an appropriate realignment route for the Alaska Railroad that will meet both the needs of the military and the Borough; and

Transportation and Infrastructure, Goal 1, Strategy 5, Action A: Encourage a reroute of the railroad to reduce the number of at-grade railroad crossings; create separate grade crossings for the remainder, when possible.

This inconsistency is relevant because local planning authority approval rests with the FNSB Planning Commission. This project as proposed does not incorporate and facilitate the long term vision for our community, and indeed recommends putting the infrastructure in place, that may preclude the achievement of our long-term vision.

The project is inconsistent with the approved Alaska State Rail Plan, which specifically calls out the Richardson Highway: MP 359 Railroad Crossing Overpass as an aspect of the Fairbanks Area Rail Line Relocation (1.2.3.2). This plan is "to serve as the basis for federal and state rail investments within the state," and as you are aware, AS 44.42 assigns the DOT the responsibility to plan for all modes of

transportation. The FNSB would not have actively supported this project over its history without the understanding that it was an aspect of the overall Fairbanks Area Rail Line Relocation project.

Finally, the Project may be inconsistent with the Fairbanks Area Rail Line Relocation Project because the geometry of the proposed crossing may preclude a transition with the rail line headed south towards North Pole.

In the past, the FNSB has supported this project in multiple comments to the State with the understanding that it would be an aspect of the Fairbanks Area Rail Line Relocation project. On at least three separate occasions, the FNSB submitted comments supporting the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility to the DOT.

In a May 7, 2014 letter signed by Mayor Hopkins, the FNSB expressed appreciation with the inclusion of this project in the State Transportation and Improvement Program (STIP) and asked for a secure funding source for the project. On August 7, 2014, Mayor Hopkins commented again with concern for funding of this project. Then, on August 18, 2016 in a letter signed for Mayor Kassel, the FNSB commented on how funding for the project had been moved out past 2019 and reiterated the importance of this "priority project" in the State Rail Plan as an aspect of the Fairbanks Area Rail Relocation Stage II Project. Then, most recently, in a letter dated January 31, 2019 to the Project Manager Colleen Ackiss FNSB Mayor Ward stated concerns for the project as designed after the stakeholder working group meeting and the alternatives were presented for the first time.

The 2007 MOU between the ARRC and the FNSB demonstrates the long term goal of both parties to move rail traffic out of the core of the community and relocate it south of town. MP 359 of the Richardson Highway is a key aspect of transitioning between phase 2 and phase 3 of this relocation and this overpass, as currently designed, appears to preclude using it as this approved transition point.

This project is very important to the FNSB not only for the safety improvements on the Richardson Highway, but also for the long-term viability of the rail relocation project. The FNSB requests that the DOT improve upon the design to demonstrate the long term rail realignment project was seriously considered and addressed through the environmental process, and that the overpass design can accommodate and, at a minimum, not preclude using this overpass as an aspect of the Fairbanks Area Rail Line Relocation project as envisioned and agreed to by all parties.

Thank you for your consideration. We hope that this project can move forward in a way that supports the longer term vision of realignment of the rail line around Fairbanks.

sincerely, Janus O. William

Bryce Ward, Mayor Fairbanks North Star Borough

Attachments (MOU)

From:Nelson, Brett D (DOT)Sent:Friday, March 01, 2019 4:04 PMTo:Ackiss, Colleen M (DOT); Skinner, Alan F (DOT)Subject:FW: Richardson Highway MP 359 Grade Separated Facility Agency ScopingAttachments:2007_ARRC_FNSB_MOU_Signed.pdf

FYI

From: Donald Galligan <DGalligan@fnsb.us> Sent: Friday, March 1, 2019 3:52 PM To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov> Subject: RE: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Brett, this is the attachment that goes with the letter. For some reason it was dropped when I sent my last correspondence.

Thanks and have a good weekend. Don

Donald C. Galligan, Jr. AICP | Planner IV—Transportation <u>Fairbanks North Star Borough</u> | Community Planning 907.459.1272 (direct) | 907.459.1260 (department) <u>dgalligan@fnsb.us</u> |

From: Donald Galligan Sent: Friday, March 1, 2019 3:49 PM To: 'Nelson, Brett D (DOT)' <<u>brett.nelson@alaska.gov</u>> Subject: RE: Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Brett, please find attached the FNSB's scoping comments for the Richardson Highway 359 Interchange and Railroad Grade Separated Facility Agency Scoping opportunity. We understand that this submittal is 1 week late, however we are already on record for the comments included here, and feel that an error was made when stating that the project as proposed is consistent with local planning. Based on this we wanted to be very judicious with our reply and this created a slight delay in our response.

Thank you for this opportunity to provide comment.

Donald C. Galligan, Jr. AICP | Planner IV—Transportation <u>Fairbanks North Star Borough</u> | Community Planning 907.459.1272 (direct) | 907.459.1260 (department) <u>dgalligan@fnsb.us</u> |

From: Nelson, Brett D (DOT) <<u>brett.nelson@alaska.gov</u>>

Sent: Friday, February 8, 2019 11:08 AM

To: Aaron Schutt - Doyon, LTD (<u>admin@doyon.com</u>) <<u>admin@doyon.com</u>>; Bailey, Meadow P (DOT) <<u>meadow.bailey@alaska.gov</u>>; <u>Benjamin.N.Soiseth@usace.army.mil;</u> Donald Galligan <<u>DGalligan@fnsb.us</u>>; Frye, Caitlin S (DOT) <<u>caitlin.frye@alaska.gov</u>>; Heil, Cynthia L (DEC) <<u>cindy.heil@alaska.gov</u>>; Henszey, Bob USF&WS <<u>Bob Henszey@fws.gov</u>>; Kellen Spillman <<u>KSpillman@fnsb.us</u>>; Molly Vaughan (<u>vaughan.molly@epamail.epa.gov</u>) <<u>vaughan.molly@epamail.epa.gov</u>>; Nancy Durham <<u>NDurham@fnsb.us</u>>; Sonafrank, Nancy B (DEC) <<u>nancy.sonafrank@alaska.gov</u>>; McCabe, Gene C (DEC) <<u>gene.mccabe@alaska.gov</u>>; Fish, James T (DEC) <<u>james.fish@alaska.gov</u>>; Leinberger, Dianna L (DNR) <<u>dianna.leinberger@alaska.gov</u>>; Fox, Jackson G (DOT) <<u>jackson.fox@alaska.gov</u>>; Schacher, Daniel L (DOT) <<u>daniel.schacher@alaska.gov</u>>; Weinberger, John S CIV USARMY IMCOM PACIFIC (USA) <<u>john.s.weinberger.civ@mail.mil</u>>

Cc: Ackiss, Colleen M (DOT) <<u>colleen.ackiss@alaska.gov</u>>; Fischer, David K (DOT) <<u>david.fischer@alaska.gov</u>>; Nelson, Brett D (DOT) <<u>brett.nelson@alaska.gov</u>>; Gamza, Thomas A (DOT) <<u>thomas.gamza@alaska.gov</u>> **Subject:** Richardson Highway MP 359 Grade Separated Facility Agency Scoping

Hello,

The attached scoping letter and accompanying figure are to provide you with an overview of the proposed project, Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734). Please review and return any comments you have on the project so that we may evaluate and consider them in our environmental document.

Thank you for your efforts in reviewing and responding, Brett

Brett Nelson Northern Region Environmental Manager Alaska Dept. of Transportation & Public Facilities 2301 Peger Road / Fairbanks, AK 99709 Office (907)451-2238 Fax (907)451-5126

MEMORANDUM OF UNDERSTANDING #1 RECE FAIRBANKS NORTH STAR BOROUGH ALASKA RAILROAD CORPORATION

FNSB CLERK'S OFFICE RECEIVED 4:00 pm

25 June 2007

THE PURPOSE OF THIS MOU

Alaska Railroad Corporation (ARRC) and Fairbanks North Star Borough (FNSB) desire to optimize the alignment of the Alaska Railroad within the Fairbanks-North Pole area to improve safety, customer, response, and minimize transportation conflicts within the adjacent communities. ARRC and FNSB agree to commence defining a new rail corridor from the west side of Fairbanks near Sheep Creek to the east side of North Pole near Moose Creek. This effort is hereby named the Fairbanks – North Pole Rail Realignment (F-NPR). Additionally, ARRC and FNSB will pursue a study to determine possible passenger transit services for the communities along the route.

OVERVIEW

Several major engineering studies have thoroughly investigated alternatives for rail realignment through the Fairbanks-North Pole area. One such segment, commonly known as the Ft. Wainwright Bypass, has been approved to provide Independent Utility and is proceeding with Department of Defense funding. It should be considered an interim route around Ft. Wainwright until such time as the F-NPR is completed.

The overall size and cost of the F-NPR is considerable and will almost certainly require that engineering, funding and construction be accomplished in phases, although these phases would be worked as simultaneously as possible. In recognition of the need for project clarity and considering that "phases" were used in previous studies over years past, a re-naming of proposed F-NPR segments is in order. The Richardson Highway Mile Post 9-North Pole project is clearly the least complex from both a financial and engineering point of view, and shall be called Phase 1. The safety benefits resulting from the Richardson Highway Mile Post 9 to North Pole phase are very substantial. Public transit is a distinct possibility for Phase 1. The NEPA process for Phase 1 can be accomplished expediently by relying on the engineering effort and environmental studies conducted to date. Securing independent utility in order to set the scope of study for NEPA looks to be a possible strategy for proceeding with Phase 1 and if determined to be viable will be supported by the FNSB.

ARRC will continue the alternative analysis engineering study for the area from Richardson Highway Mile Post 3 to Richardson Highway Mile Post 9 (Phase 2) and for the remaining realignment segment west of Phase 2 past the Chena River (Phase 3). Phase 1 should be first priority among the three phases.

Phase 1 Considerations

The existing Tanana River Levee provides a feasible realignment corridor for the railroad that the partners believe would improve safety, minimize traffic conflicts and optimize freight/transit through the area. The Tanana River Levee was constructed by the US Army Corps of Engineers (COE) and is now the responsibility of the FNSB. As part of Phase 1 the FNSB and the ARRC will develop a no-fee "exclusive use easement" right of way and work cooperatively with permitting authorities to ensure use of the area on or near the levee as a rail corridor through a right-of-way agreement. Maintaining

the structural integrity of the rail/levee combination is essential, is in the vital interest of all parties, and must not be compromised. The addition of a railroad on or near the levee could also be used to improve the structural integrity of the levee. As the railroad is realigned to the levee, with the approval of the COE where necessary, the ARRC could assume the FNSB's responsibility for maintenance of the levee in accordance with the COE agreements.

 $f^{\mu, \epsilon}_{i, j}$

Once the railroad and engineering design for the levee commences, the ARRC and FNSB will seek public input and identify opportunities to enhance recreational trails. The FNSB has a designated recreational trail in the levee area that is largely undeveloped and its upgrade could be an integral part of the project. ARRC would provide access to the river-side of the levee where appropriate. ARRC and FNSB will cooperate to mitigate personal and vehicle access issues arising from the new railroad location. Access is expected to be approved for certain designated locations and will generally coincide with section lines and/or major roadway alignments. FNSB will support ARRC efforts to obtain required Federal approvals, such as "4(f)", which addresses impacts to recreational trails.

Any railroad right-of-way to be completely vacated by F-NPR will trigger statutory evaluation for possible reversion, beginning with North Pole in Phase 1.

Phase 2 and Phase 3 Considerations

As the ARRC progresses on the design and construction of Phase 1, efforts will turn to the west. The FNSB and the ARRC will aggressively pursue funding for planning and design of Phases 2 and 3 of the F-NPR.

This MOU demonstrates that the long term goal of both parties is to move rail traffic out of the core of the community and relocate it south of town. The parties acknowledge that while a "no build" option will be considered under every phase, one purpose of this MOU is to articulate the parties' agreement that routes south of Fairbanks are preferred solutions over increasing speeds or elevating rail traffic through the Trainor Gate –New Steese – Old Steese areas of town.

As each phase of railroad relocation develops, the ARRC and the FNSB can draw up further MOU's or right of way agreements as necessary to lock-in specific details for the subsequent project phases.

For the ALASKA RAILROAD CORPORATION

Patrick K Gamble President & Chief Executive Officer

For the FAIRBANKS NORTH STAR BOROUGH

Jim Whitaker Mayor

From:	Nelson, Brett D (DOT)
Sent:	Monday, March 04, 2019 11:29 AM
То:	Ackiss, Colleen M (DOT); Skinner, Alan F (DOT)
Subject:	FW: Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility
-	(60734) project (UNCLASSIFIED)

This should be the last of the comments.

Brett

-----Original Message-----

From: Petersen, Ida R CIV USARMY IMCOM PACIFIC (US) <ida.r.petersen.civ@mail.mil> Sent: Monday, March 4, 2019 11:22 AM To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov> Cc: Guo, Jerry P CTR USARMY IMCOM PACIFIC (US) <jerry.p.guo.ctr@mail.mil> Subject: Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility (60734) project (UNCLASSIFIED)

CLASSIFICATION: UNCLASSIFIED

Brett,

As part of the early coordination process, the form was sent to all affected organizations at USAG Alaska. We received one comment during the review of the Richardson Highway MP 359 scoping review, below:

"The Document discusses the DOT maintaining a multi-use path within the land eased to DOT within federal military land. The multi-use path would need to be separate from the troop crossing. It needs to be designed and constructed at different levels so the path users do not gain access to FWA's cantonment area and/or small arms range."

No other comments on this project. Thank you,

Ida Petersen, P.E. NEPA & Water Program Manager USAG Alaska IMFW-PWE (907) 361-6220 ida.r.petersen.civ@mail.mil

Check out the updated Fort Wainwright Storm Water website at: https://urldefense.proofpoint.com/v2/url?u=https-3A__www.wainwright.army.mil_index.php_about_environmental_compliance_storm-2Dwater&d=DwIFAg&c=teXCf5DW4bHgLDM-H5_GmQ&r=uh3tS-3Ecxbjy4ZjwZnyq4hZJ8KDyt6jYZ7Nk8gGFJM&m=YQJNZFGawNtUQB1t4A3XRS3LQ-xKaJc1UBENM4e26JY&s=ki0vZyL_8Md6uXigoArvSGBq2S7CQsp9rbyAZU_AYk&e=

CLASSIFICATION: UNCLASSIFIED

From:	Nelson, Brett D (DOT)
Sent:	Tuesday, March 12, 2019 3:37 PM
To:	Ackiss, Colleen M (DOT)
Subject:	FW: Air Quality Division Response to the Proposed Richardson Highway Milepost (MP) 359 Interchange and Railroad Grade Separated Facility (60734) project

Hi Colleen,

This just rolled in as well. DEC is suggesting that we do an interagency consultation on this one, so I am checking with Jackson. Seems like this should have been taken care of already by including in the MTP project list, so I will let you know.

Thanks, Brett

From: Alimi, Adeyemi S (DEC) <adeyemi.alimi@alaska.gov> Sent: Tuesday, March 12, 2019 3:23 PM To: Nelson, Brett D (DOT) <brett.nelson@alaska.gov> Cc: Heil, Cynthia L (DEC) <cindy.heil@alaska.gov> Subject: Air Quality Division Response to the Proposed Richardson Highway Milepost (MP) 359 Interchange and Railroad Grade Separated Facility (60734) project

Dear Brett Nelson,

The Alaska Department of Transportation and Public Facilities (DOT&PF) is soliciting for comments on the Proposed Richardson Highway Milepost (MP) 359 Interchange and Railroad Grade Separated Facility (60734) project. DOT&PF requests agency or organization to provide information on the following:

- 1. Responding Agency
- 2. Is the information provided herein consistent with agency knowledge?
- 3. Does this scoping request adequately identify resources and permit needs under your agency's jurisdiction?

1. Responding Agency

Thank you for the opportunity to comment on the proposed project. The following comments are limited to Air Quality. Other divisions within Alaska Department of Environmental Conservation (ADEC) will need to respond within their areas of expertise.

2. Is the information provided herein consistent with agency knowledge?

Yes, the proposed project is within the boundaries of Fairbanks nonattainment area for PM_{2.5} and Fairbanks maintenance area for carbon monoxide (CO). The Air Quality Division (AQ) of Alaska Department of Environmental Conservation (ADEC) agrees that the proposed pedestrian facilities and the railroad crossing improvements are exempt from project-level conformity under 40 CFR 93.126. Since the interchange is a project in the approved 2040 FMATS Metropolitan Transportation Plan (MTP)(#VLR-20) and the MTP has an approved determination, the project has demonstrated project-level conformity; in accordance with the provisions in 40 CFR 93.114 and 40 CFR 93.115, to demonstrate project-level conformity, a project must come from a conforming MTP and Transportation Improvement Program (TIP). In accordance with the provisions in 40 CFR 93.116(a), we agree that the proposed project is exempt from

CO hotspot analysis because it does not include any signalized intersections. Lastly, we believe that the project is exempt from PM_{2.5} hotspot analysis because it would not affect intersections at Level of Service D, E, or F, and would not increase traffic volumes from a significant number of diesel vehicles.

However, while we may agree the project is exempt, only an interagency consultation can confirm the exemptions and ensure no conformity determination, hot spot analysis, or project-level conformity analysis is required. Therefore, ADEC-AQ recommends an interagency consultation. The interagency consultation, which satisfies the provisions in 18 AAC 50.715(a)(2) and 40 CFR 93.105(c), should include the air quality staff of ADEC, the MPO (Fairbanks Metropolitan Area Transportation System (FMATS)), Fairbanks North Star Borough (FNSB), Environmental Protection Agency (EPA), and State and federal DOTs (ADOT/PF and the Federal Highway Administration (FHWA)/Federal Transit Administration (FTA) within the Department of Transportation (DOT)). The interagency consultation not only confirms exemptions but the documentation of an interagency consultation also provides protection for any air quality issues or challenges to this project in the future.

Please contact me if you would like any assistance. I can easily provide the names and contact information for an interagency consultation. Also, please include me in any future requests for agency comments on ADOT projects.

Sincerely,

Adeyemi Alimi (Yemi) State of Alaska, Department of Environmental Conservation Air Quality Division Non-Point Mobile Sources Section <u>adeyemi.alimi@alaska.gov</u> 907-269-6953 (Office)

FMATS Interagency Consultation Meeting Summary April 10, 2019 9 AM

Attendees

FMATS – Jackson Fox DOT&PF – Brett Nelson, Alan Skinner, Holly McKinney FNSB – Nick Czarnecki ADEC – Cindy Heil, Adeyemi Alimi, Steven Hoke EPA – Karl Pepple FHWA – John Lohrey, George Noel FTA – Ned Conroy

Summary

Jackson Fox (FMATS) led attendee introductions/roll call.

Alan Skinner (DOT&PF) introduced the Richardson Highway MP 359 Grade Separated Crossing project. He indicated that the project goal was to replace two at-grade intersections (railroad and highway traffic) with two grade-separated interchanges. Alan stated that the highway intersection is LOS C in the morning and LOS D in the afternoon. The intersection is anticipated to be LOS F in the long-range 2045 Metropolitan Transportation Plan (2040/2045 MTP).

Mr. Fox opened up the call to questions from agency participants.

Karl Pepple (EPA) asked for clarification about the project, specifically if it was HSIP funded. Brett Nelson (DOT&PF) answered that it was a potential high risk crossing, but that it was not funded by HSIP and covered under operations improvement with inclusion in the 2040/2045 MTP.

George Noel (FHWA) spoke up, suggesting that although this may not be a HSIP project, it may still qualify for an exemption from project-level conformity under 40 CRF 93.126, table 2, line #2 (Projects that correct, improve, or eliminate a hazardous location or feature). Mr. Nelson indicated that DOT&PF would contact Pam Golden (DOT&PF) and ask her to provide a brief justification that shows this project component qualifies as exempt under 40 CFR 93.126, table 2, line #2, line #2.

Mr. Noel asked if the intersection was an area of rapid growth and whether there would be an increase in diesel engines and pollution after the improvements were made. Mr. Skinner indicated that DOT&PF anticipates a 1.2% growth rate for all traffic, including diesel engine use. Because of weight restrictions on bridges through town, truckers are already required to use that intersection. The work at the intersection is not anticipated to significantly alter traffic patterns.

Mr. Noel mentioned that if we can't get the safety exemption, the other alternative is CO hotspot analysis of LOS D, E, or F intersections as described in 40 CFR 93.123 (1)(ii).

Mr. Fox asked the attendees how they would like to handle further communications. They agreed that they would reconvene for another conference call after it was determined whether an exemption could be made under 40 CRF 93.126, table 2, line #2.

No further questions were asked regarding the Richardson Highway MP 359 Grade Separated Crossing project. The conference call concluded at 9:32am.

Interagency Consultation Meeting Summary May 8, 2019 1:00 PM

Attendees

Fairbanks MPO – Jackson Fox DOT&PF – Brett Nelson, Alan Skinner, Holly McKinney, Randi Baliey FNSB – Nick Czarnecki ADEC – Cindy Heil, Steven Hoke EPA – Karl Pepple FHWA – John Lohrey, George Noel, Leigh Oesterling

Summary

Jackson Fox (Fairbanks MPO) led attendee introductions/roll call for the second interagency consultation meeting for the Richardson Highway MP 359 Grade Separated Crossing project air quality conformity ruling. Mr. Fox stated that Ned Conroy (FTA) was not able to attend the meeting but that he would defer to whatever decision FHWA, EPA, and other consultation attendees made.

Mr. Fox began the meeting by asking members of the DOT&PF team to tell the agency members where the project stands. Brett Nelson (DOT&PF) asked the agency participants to look at the memorandum (dated 04/26/2019) from Pam Golden (Northern Region Traffic and Safety Engineer) which states that "40CFR 93.126, Table 2, line #1, indicates the railroad/highway crossing improvements are exempt from the requirements to determine conformance to adopted air quality plans, which applies to the railroad grade separation portion of the subject project. Line #2 of the same table indicates projects that correct, improve, or eliminate a hazardous location or feature are also exempt. It is the opinion of the Traffic & safety office that this project eliminates a hazardous location." Mr. Fox asked the agency participants if they had any objections to Ms. Golden's opinion, or if they agreed that the project met the criteria for an exemption.

John Lohrey (FHWA) stated that he felt that the project meets the criteria for an exemption. Leigh Oesterling (FHWA) also stated that she felt that the project meets the criteria for an exemption. Ms. Oesterling suggested that the exemption criterion under 40 CFR 93.126. Table 2, Line #2 was especially strong as the Richardson Highway MP 359 Grade Separated Facility: Interchange Concept Development Memo indicated that 24 crashes had occurred in the study area between 2008 and 2012.

Ms. Oesterling then asked Mr. Fox if air quality conformity exemptions were also included in the Transportation Improvement Plan (TIP). Mr. Fox indicated the Richardson Highway MP 350 project was included in an informational table in the TIP, but the TIP does not list project eligibility for air quality exemptions. Ms. Oesterling then suggested that if the project is exempt, there is no need to complete an individual conformity determination analysis.

Mr. Fox then confirmed that the FHWA did not feel that there was a need to complete project-level air quality conformity analyses for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility. Both Mr. Lohrey and Ms. Oesterling (FHWA) agreed that the project was exempt and no additional air quality conformity analyses were necessary. Mr. Fox then asked if any other agency representative had any objections to this project being exempt. George Noel (FHWA) and Cindy Heil (ADEC) agreed that the project met the criteria for an exemption.

Mr. Fox then asked if there was a need for an official letter concerning the air quality conformity determination. Ms. Oesterling indicated that an official document was not needed and that the teleconference memos would suffice as documentation; which should be added to the NEPA documents.

Mr. Fox asked if there were any other questions regarding the Richardson Highway MP 359 Grade Separated and Railroad Grade Separated Facility. Ms. Oesterling stated that she didn't have any further questions but she would recommend that in the future, that a statement about air quality conformity should be included in project descriptions to avoid the necessity of having more than one interagency consultation meeting. The teleconference concluded at 1:13PM.

MEMORANDUM

TO: Colleen Ackiss, P.E. Engineering Manager Northern Region

State of Alaska **Department of Transportation & Public Facilities** Northern Region Design and Engineering Services

DATE: 04/26/2019

FILE NO: Projects/Rich Hwy/60734 Rich 359 GradeSepFac/07 Environmental/00 Env General/Air quality/TS Conformity

PHONE NO: 451-2283

FAX NO: 451-5390

FROM: Pam Golden, P.E. Traffic & Safety Engineer Northern Region

SUBJECT: Richardson Hwy MP 359 Interchange and RR Grade Sep Z7607340000/0A24033 Air Quality Conformity

40 CFR 93.126, Table 2, line #1 indicates railroad/highway crossing improvements are exempt from the requirement to determine conformance to adopted air quality plans, which applies to the railroad grade separation portion of subject project.

Line #2 of that same table indicates projects that correct, improve, or eliminate a hazardous location or feature are also exempt. It is the opinion of the Traffic & Safety office that this project eliminates a hazardous location. In the existing configuration, northbound Richardson Highway traffic wishing to exit the highway to access the Old Richardson Highway area crosses the southbound prism of the Richardson Highway at grade. Northbound drivers must exit to the left, which violates driver expectation. Further, trucks wishing to use the exit must weave across all northbound lanes of traffic due to being required to stop in the truck/bus lane at the railroad crossing that is also a part of this project. Posted highway speed in this area is 60 mph. Sight distance at the crossing is good; however this is the only at grade street crossing in the first 5.8 miles of the southbound prism of the Richardson Highway.

Crashes with vehicles traveling at 60 mph generally have more severe outcomes than those at lower speeds, making this an inherently high consequence location should crashes occur. This project aligns with Strategy 2 of Alaska's Strategic Highway Safety Plan as elimination of this at-grade intersection would remove the high speed conflict point.

pkg/kbg (b)

"Keep Alaska Moving through service and infrastructure "

Attachment 10 Stakeholder and Public Involvement

- 10A- Stakeholder Meeting Agenda
- **10B- Stakeholder Meeting Sing-in Sheet**
- **10C-** Public and Stakeholder Comments and Responses

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 Project Website: www.dot.alaska.gov/nreg/rich359/ January 24, 2019 2:00 to 4:00 PM

STAKEHOLDERS' MEETING AGENDA

We welcome your input and ideas. Thank you for taking the time to be involved.

- I. Welcome and Introductions
 - a. Design Team and Roles
 - b. Stakeholders and Interests
- II. Project Background: Purpose and Need for Improvements near MP359
- III. Project Timeline
- IV. Presentation of Conceptual Design Solutions
- V. Discussion: Questions, Answers, Comments, New Ideas
- VI. PLEASE fill out a comment sheet today or deliver by January 31, 2019.

* This information is voluntary. Its purpose is to ensure fair and equal representation by the public in all projects and programs administered by the Alaska Department of Transportation and Public Facilities.

STAKEHOLDERS' MEETING SIGN IN SHEET

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 January 24, 2019

We welcome written input from the public. Thank you for taking the time to be involved.

PAGE OF 5

NAME/ COMPANY/ AFFILIATION (PLEASE PRINT)	MAILING ADDRESS and *EMAIL	- PHONE	*GENDER (M/F)	*RACE OPTIONAL
Mike Harrod	Mike. Harrod@ Crowley. Co	347-3493 h	M	Laucasay
Colleen Ackiss	2301 feger Kol	451-5179	-	-
James McCurtain	Jacobs/ james mech ten lines son	301-4042	M	-
Jm Bots / Jacobs	james. pottsejacobs.ca	907-830	M	Carcasion
Joe Michal / alaska Truckling association	joe Ball trucks. 0-2	907 276 1149	~	alus 100 Native
Josh Norum	judrume Sour Lough express.com	907 974-4907	M	
James Mc Milon	15) Old Lichaldson	322-6050	M	

The environmental review, consultation, and other actions required by applicable Federal environmental laws are being, or have been, carried on by the Alaska -DDAT&PP parameters 2013 5.0, 377 and a Manoranom or Endocromation dated for endocember 3, 2017 and exceeded by the FIFWA and DOT&PF

"This information is voluntary. Its purpose is to ensure fair and equal representation by the public in all projects and programs administered by the Alaska Department of Transportation and Public Facilities.

STAKEHOLDERS' MEETING SIGN IN SHEET

Richardson Highway MP 359 Interchange and Railroad **Grade Separated Facility** Z607340000 / 0A24033 January 24, 2019

We welcome written input from the public. Thank you for taking the time to be involved.

PAGE 5 OF 5

NAME/ COMPANY/ AFFILIATION (PLEASE PRINT)	MAILING ADDRESS and *EMAIL	- PI
JACK BINDER		9
ALASKA WEST EXAKESS	jbinder @ lynden.com	34:
Ratrina Martolano Brenntag Pacific	Martolano@ak.net	1.1
Koren Erich	760 Sheep G. Rol;	907
Craig Widdis DUPLIGATE	4 (see pg & detail	2
Tachson Fox	2301 Peger Fd F6hs, Ah 99709	451
· ·		

The invironmental review, consultation, and other actions required by applicable Federal environmental laws are being, or have been, carried out by the Alasha, DOT&PF-processing to 2015/C-320 and other actions required by applicable Federal environmental laws are being, or have been, carried out by the Alasha, DOT&PF-processing to 2015/C-320 and other actions required by applicable Federal environmental laws are being, or have been, carried out by the Alasha, DOT&PF-processing to 2015/C-320 and other actions required by applicable Federal environmental laws are being, or have been, carried out by the Alasha.

IONE	*GENDER (M/F)	*RACE OPTIONAL
107.	M	*
131/33	13 F	
7127715	F	с.
5415	т	ω

	administered by STAKEH Richards	pose is to ensure fair and equal representation the Alaska Department of Transportation an IOLDERS' MEETING SIGN IN On Highway MP 359 Interchange and F Grade Separated Facility Z607340000 / 0A24033 January 24, 2019 nput from the public. Thank you for taking the PAGE 4 OF 5	d Publi SHE Railroa
an an	NAME/ COMPANY/ AFFILIATION (PLEASE PRINT)	MAILING ADDRESS and *EMAIL	- рн
	· (Andrew Tryills/Frickenfs to	W I I C I C I C I	PH 909 379
	man Craig Widdie	4089 Pegor 29709	45
	u -		1
			-
			-
	The environmental antipop enjoyitation and alter a	ctions required by applicable Pederal environmental fr	

e public in all projects and programs lie Facilities.

to be involved.

IONE	*GENDER (M/F)	*RACE OPTIONAL
56290	M	
2-494	o M	

~

being, or have been, carried can by the Alaska Thy the TTIW A and DOT&PL "This information is voluntary. Its purpose is to ensure fair and equal representation by the public in all projects and programs administered by the Alaska Department of Transportation and Public Facilities.

STAKEHOLDERS' MEETING SIGN IN SHEET

Richardson Highway MP 359 Interchange and Railroad **Grade Separated Facility** Z607340000 / 0A24033 January 24, 2019

We welcome written input from the public. Thank you for taking the time to be involved.

PAGE 3 OF 5

NAME/ COMPANY/ AFFILIATION (PLEASE PRINT)	MAILING ADDRESS and *EMAIL	- PHONE	*GENDER (M/F)	*RACE OPTIONAL
DOTIFF	2-301 Projer Ref	451-2262	m	~
Alicia stevens FMATS	alicia. stevens@alasta.gov	10	F	W
Travis Malin Hec	1296 OIL Rich hwy	488-5983	m	w
Scatt FRAZEY	855 JUD 75CH	978-550	o M	w
Kellen Spillman	FNSB	-	m	h
Alan Hoza Lyndinligisti	g246 Brightandr, Farbantes	388-9411	M	w
Daniel Martdano	North Pole 1242 North Star Drive	1.00		w

The environmental review, consultation, and other actions required by applicable Federal environmental laws are being, or have been, carried out by the Alaska DOTA PE pursuant to 23.1.5.1. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PE.

This information is voluntary. Its purpose is to ensure fair and equal representation by the public in all projects and programs administered by the Alaska Department of Transportation and Public Facilities. STAKEHOLDERS' MEETING SIGN IN SHEET Richardson Highway MP 359 Interchange and Railroad **Grade Separated Facility** Z607340000 / 0A24033 January 24, 2019 We welcome written input from the public. Thank you for taking the time to be involved. PAGE 2 OF 5 NAME/ COMPANY/ AFFILIATION (PLEASE PRINT) MAILING ADDRESS and *EMAIL PH arctive emosquitoret.com 90 457 GROTIC FIRE 02 3der Pp. Box 20430 99708 Lori Bishup Products FS&G Redi-Mix (Paving Products Ibishup Dfsgrm.com 452 385 Mgray@Colaska.com Exclusive Faring Janskinner Calaska gov Don Galligan / FUSB 24 12 45 20T+PF 451-LUND DOST OFF lund Calaska, gov 37 bunks channer le The covinaniental review consolitation, and other actions required by applicable Federal environme Hays are being, or have been, carried out by the Alaska. DOT&PE pursonil to 2111.8 (* 127 and a Memoranilum of Understanding dated Accomber 3, 2017 and executed by the LHWA and DOT&PE

IONE	*GENDER (M/F)	*RACE OPTIONAL
7 1-78020	F	White
-4903	F	AK Native
-5578	M	
69- 72	N	
7- 13/	M	Ŵ
5067	m	w
4-	F	W

tle	Status	Publish Date	Archive Date	Last Modified	Comments	Actions
otice of Intent Tok Cutoff MP 38-50 Rehabilitation	Active	1/28/2019	2/11/2019	1/28/2019	0	
tice of intent to Begin Engineering and Enviromental Studies	Archived	1/2/2019	1/26/2019	1/2/2019	0	
Lichardson Huy MP 359 Including Over Ho otice of Proposed Vacation of a Portion of Highway Right of Way	Archived	Enlade 12/24/2018	1/29/2019	12/24/2018	0	
otice of Intent Nulato Airport Access Road Improvements Project	Archived	12/10/2018	1/11/2019	12/10/2018	0	-
iblic Open House North Pole Street Lighting Standardization and provements	Archived	11/2/2018	12/6/2018	10/10/2018	0	
orthern Region Deep Culverts Stage III Project-Notice of Proposed de Inimis Section 4(f) Finding	Archived	11/1/2018	12/7/2018	11/1/2018	0	
otice of Intent Richardon Highway MP 18-24 Resurfacing	Archived	10/30/2018	11/16/2018	10/30/2018	a	
equest for Comments Alaska Highway MP 1235-1268 Rehabilitation	Archived	10/30/2018	11/23/2018	10/30/2018	0	
blic Notice Whitshed Road and Pedestrian Improvements	Archived	10/22/2018	11/2/2018	10/22/2018	0	
pen House Old Richardson Highway Intersection Improvements	Archived	10/22/2018	11/30/2018	10/22/201B	0	
iblic Open House Airport Way/Steese Expressway Interchange Project	Archived	9/28/2018	10/26/2018	10/17/201B	1	
otice of Intent Richardson Highway MP 148-173 Reconstruction	Archived	9/18/2018	10/19/2018	9/18/2018	0	
atice of Intent to Northern Region River Encroachment Repairs- Irdova Eyak Lake Road	Archived	7/31/2018	8/15/2018	7/30/2018	0	
blic Open House Airport Way West Improvements	Archived	6/29/2018	7/29/2018	6/29/2018	0	
rpose & Need State Request for Public Comment-Steese pressway/Johansen Expressway Interchange	Archived	5/30/2018	6/15/2018	5/30/2018	o	
iblic Meeting-Richardson Highway MP 159-173 Reconstruction	Archived	5/18/2018	6/15/2018	5/18/2018	0	_
pen House Yankovich Rd/Miller Hill Rd Reconstruction and Multi-Use Ith	Archived	4/29/2018	6/5/2018	5/3/2018	<u> </u>	
blic/Planning Meeting Nulato Airport Access Road Realignment	Archived	4/23/2018	5/14/2018	4/23/2018	0	
pen House St. Mary's Airport Improvements	Archived	4/12/2018	5/18/2018	4/10/2018	0	_
blic Meeting Northern Region Deep Culverts Stage III	Archived	4/6/2018	5/18/2018	4/2/2018	0	
nena River Walk Stage III, Segment I- Public Open House	Archived	3/14/2018	4/23/2018	3/14/2018	_1_1	1
iblic Meeting Holy Cross Airport Resurfacing and Lighting habilitation Project	Archived	11/29/2017	1/10/2018	11/29/2017	o	
ublic Meeting White Mountain Airport Resurfacing and Lighting Phabiliation	Archived	11/29/2017	1/13/2018	11/29/2017	0	
otice of Intent Carlson Center Motor Plug Ins, Fairbanks and North ole Libraries and Big Dipper Motor Plug Ins	Archived	10/12/2017	11/1/2017	10/12/2017	0	4
otice of Intent/Request for Public Comments-Northern Region croachment Repairs	Archived	9/27/2017	10/6/2017	9/27/2017	_ o _	
otice of Intent/Request for Public Comments-Parks Highway MP 356- 52 Resurfacing	Archived	9/27/2017	10/15/2017	9/27/2017	_0	4
en House HSIP; Richardson Highway MP 351 Interchange	Archived	9/8/2017	10/31/2017	9/8/2017	0	
otice of Intent McCarthy Road MP 27 Chokosna Bridge #1193 placement	Archived	8/28/2017	9/29/2017	8/28/2017	2	
otice of Intent Richardson Highway MP 65-80 Rehabilitation	Archived	8/28/2017	9/29/2017	8/28/2017	o	
otice of Intent Aurora Drive Noyes Slough Bridge #0209 Replacement	Archived	8/24/2017	9/29/2017	8/24/2017	0]	1

https://aws.state.ak.us/OnlinePublicNotices/Notices/MyNotices.aspx

Public Comment & Response Summary Date Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project No. Z607340000/0A24033

The following document summarizes the public scoping comments received by email, comment sheet, in person, and phone from December 19, 2018 to January 25, 2019.

Name	Comment Submission Method	Comment	Response
Rachel Maddy ARRC, Manager of ROW and Public Projects	email	No objection to either alt granted that they both include a highway overpass over the railroad that meets ARRC Standards. Any ped crossing of tracks will need to be on the overpass.	None needed.
Katherine Hensley DOT&PF, CVE	phone	Requested clarification information so that she could explain the project to the trucking industry.	None needed.
Karl Reid	email	Looks forward to the proposed improvements at both locations. SWEET!	None needed. Did send a "thank you for your comments" response.
Martin Gray Exclusive Paving	email	Open to the project, and favors the flyover concept.	None needed. Did send a "thank you for your comments" response.
Alan Hoza Lynden Logistics	email	Favors the flyover concept. Would like a vertical clearance of 18'6" even though there is an over-height bypass and other height restrictors on the route (i.e. Big Delta Tanana River Bridge). Would like project to accommodate excessively wide loads - 28' wide.	None needed. Did send a "thank you for your comments" response.
Travis Malin HC Contractors	email	Appears to support the flyover over the modified diamond due to economics. Recommended many construction considerations to take into account during the design process.	None needed. Did send a "thank you for your comments" response.
Jack Binder Alaska West Express	email	Favors the flyover concept. Is a strong proponent of overhead clearance at 18'6". Believes 18' should be a minimum overhead clearance, with 18'6" being an even better option. Strongly concurs with Alan Hoza's thoughts and ideas.	None needed. Did send a "thank you for your comments" response.

Jackson Hurst	email	Would like to be added to the project mailing list.	Responded that there is no project mailing list and directed him to the project website as the best location to stay informed regarding the project.
Karen Erickson(?)	dropped off	Submitted Alan Hoza's comments with a hand note stating	None needed. Did not supply their
and Craig Widdis	in-person	that they agree with all of the notes and comments.	contact information.
Mayor Bryce Ward Fairbanks North Star Borough	email/letter	Concerned that the current design is not consistent with the following plans: Fairbanks Area Rail Line Relocation Project, FNSB Regional Comprehensive Plan, and the Alaska State Rail Plan	NR Director Anderson discussed the project and comments with Mayor Ward prior to the DOT&PF Engineering Manager responding. A formal letter response was sent identifying how the current design elements are consistent with the three plans.
The following corre	spondence was	s initiated/received following the receipt of comments to assi	st with the response to Mayor Ward.
Brian Lindamood ARRC	email	Provided further information regarding the Fairbanks Area Rail Line Relocation Project.	Incorporated this information into the formal response letter to Mayor Ward.
Ryan Anderson DOT&PF NR Director	email	Summarized a meeting he had with Mayor Ward.	
Formal responses to comments (excluded the "thank you for your comments" response).			
Letter to Mayor Ware	d from Colleen	Ackiss, DOT&PF Engineering Manager dated March 18, 2019	

COMMENT SHEET

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 December 19, 2018 – January 25, 2019 On-Line Open House

We welcome written input and ideas from the public. Thank you for taking the time to be involved. (If you need more space please use second sheet.)

COMMENTS:

ARRC has no objection to either proposed alternative granted that they both include a highway overpass over the railroad that meets the ARRC Technical Standards for Roadway, Trail, and Utility Facilities current at the time of design. Any pedestrian crossing of the tracks will need to be accomodated on the new overpass facility (ARRC will not allow a combination of al-grade and grade separated facilities at the same location for safety reasons).

How did you hear about this meeting?

*Before including your address, phone number, e-mail address, or other personal identifying information in your comment, be advised that your entire comment –including your personal identifying information –may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

E-MAIL ADDRESS: MaddyR@akrr.com

NAME: Rachel Maddy, Manager of ROW and Public Projects, ARRC MAILING ADDRESS: 327 W. Ship Creek Ave, Anchorage, AK 99501

For further information, please contact Colleen M. Ackiss, P.E., Engineering Manager, at (907) 451-5179 or email: colleen.ackiss@alaska.gov. To correspond by text telephone (TDD), please call (907) 451-2363. Please return comments by January 25, 2019.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the Alaska DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PF.

Name/Section

TELEPHONE/CONFERENCE DATA

Date: 01/17/19 PEOPLE INVOLVED REPRESENTING Kotherine Henstey Commercial Vehicle Time: Noon 907-365-1215 Enfircement Project No./Name_ Rich MP 350 Colleen Ackies Service Engineering Interchange i Railroad Evade Information separation. TOPICS: Loolary fer 2607340000 realled her through Ale ternties Alnow tricks would accompated be. the AL Vanys goc under the Rich with an over hught vehicle the paralled to the Virl Rich anes over the needed. - paro no is She was 100key design ner-the plansinformed available they - Alio were at no call was art intomation 50 her of to puppe she explain these Could to the fligt aon pts truckey MO ust xlone. ACTION ITEMS: Copies To:, Signature: Collen achin

From:	Karl Reid <krr1955@alaska.net></krr1955@alaska.net>
Sent:	Monday, January 21, 2019 6:34 PM
То:	Ackiss, Colleen M (DOT)
Subject:	MP359Interchange
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi. I have looked forward to a better intersection @ the old/new Richardson area. Was wondering what is purposed. A one lane, (wide), overpass from the North bound New Rich onto the Old Rich would work really well for me as a truck driver. Very unsafe trying to pull across with a single trailer let alone a set or doubles at the present way the intersection is. Not to mention time consuming especially during 5:00 pm go home traffic. And,,,, a possible over pass at the train tracks? SWEET! Both improvements I highly look forward to. Well worth putting up with the construction phase part of the plans. Best of luck.

From:	GRAY, Martin (NORTP) <mgray@colaska.com></mgray@colaska.com>
Sent:	Thursday, January 24, 2019 4:04 PM
То:	Ackiss, Colleen M (DOT)
Cc:	LEFEBVRE, Sarah (NORTP)
Subject:	Richardson HWY MP 359 Interchange Comment

Colleen,

Exclusive Paving is open to the construction of Richardson Highway MP 359 interchange. I believe that the flyover concept would be a more ideal design due to the close proximity of the power lines near the Old Richardson off ramp. Due to oversized loads that we haul, these lines could come into conflict. Also the flyover concept appears to be less invasive and a more cost effective project for the time being.

Thanks,

Martin J. Gray Project Engineer Exclusive Paving 1570 Richardson Hwy, North Pole, AK 99705 Cell <u>907.385,5578</u> Direct <u>907.490.1344</u> Mgray@colaska.com | www.colaska.com

s.com
s.com
ion; Steve Willford; Karen Erickson; Michel,
, ATA; Norvell, Donald R; Schacher, Sarah E
erchange and Railroad Grade Separated
ance Table 1130-1.pdf

Hi Colleen and Jim,

Thank you both for you time and commitment to communicating with industry during the design of these projects!!

I have attached my comments on the project in the attached to hopefully capture the concerns of both the many barely legal loads and of the mega-move type transports which, although not common, do indeed occur through the Fairbanks area. As one involved in the coordination of these types of moves, believe me, these can seriously impact the flow, attitude, actions, and safety of the general traffic – in spite of the traffic control measures in place to help control the impacts. That said ... we would be good to strive to minimize the limitations of these types of movements, as they occasionally do occur (ex: North Slope projects, potential natural gas projects, potential gas line project, potential large mine projects, etc. ...).

I have also attached the table referenced in the AK Reconstruction Manual.

I am copying some others, in hopes that this will encourage them to submit their own comments – now, vs. once your design has made more progress and is more expensive to alter. <u>Please – others – do submit your comments</u> by January 31st: the link for the project is: <u>http://dot.alaska.gov/nreg/rich359/</u>

Respectfully, Alan

Alan Hoza Lynden Logistics C: 907-388-9411

COMMENT SHEET Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 December 19, 2018 – January 25, 2019 On-Line Open House

We welcome written input and ideas from the public. Thank you for taking the time to be involved. (If you need more space please use second sheet.)

COMMENTS:

I (and most drivers I surveyed) favor the Flyover Concept). It appears to be the least impactful for truck flow – with minimized maneuvering, which can enhance oversize vehicle movements.

- We would like to see an 18'6" clearance under the Flyover. We realize there is an overheight bypass, however, having a higher clearance on the main route can minimize any accidental miss-measurements, or complacent driving – so why would we not build in a more reasonable height to aid in minimizing any strike potentials! This would allow the flow impact in/out of traffic in/out of the bypass to the extreme over-height loads only – which is more appropriate. There are more of these loads in the on the verge of exceeding 17'6" than perhaps even the permit office is aware of.
- This is the main route from the port terminal in Valdez to the Prudhoe Bay oilfields. I feel that it would be unwise to limit the height on this Flyover. I do realize there are other restrictions (Big Delta Tanana River bridge, etc.), however, there have been much discussion between DOT, big oil companies, and industry that perhaps some of those limiting structures should be improved for future projects (ex. Gas line or any other future). So why would we limit this main inbound route into Fairbanks (and on north) for a couple feet of height (my opinion is 18' min)?? This would also drastically decrease the potential for any future bridge strikes!!
 - Note: in the AK Highway Preconstruction Manual, 1130-5 Cross Sections (Table 1130-1 Vertical Clearance): there is a footnote "**" which states "From the Port of Anchorage to the North Slope the clearance of roadways underpassing railroads shall be 18 ft.". This footnote was a result of discussions of transports which had caused intensive modifications to pass under the underpass just south of Riley Creek near the Denali Park entrance. The ARRC decided to set the clearance. Also note that the Denali Region also cut the clearance to nearly 19' under that RR overpass, due to these transports as well. Further note: The State Highway section of the table needs to be updated to a min. of 18' (min.) to account for the post 2005 legal height increase from 16'6" to 17'6" on main highways.
 - Also: at least three of the largest carriers of oversize transports have blanket utility clearances with the permit office which allow for 18'0, reducible to 17'6, from Port of Anchorage and Port of Valdez to the North Slope. It is quite difficult for these 18' loads to be reduced all the way to 17'6, however, it is reasonable for them to be reduced to $\sim 17'10$ " by simply releasing the air in their suspensions. To maintain an 18' min clearance would be reasonably acceptable to the industry so why would we not target 18'6" to allow for snowpack, etc.?

- The Flyover (or underpass if Modified Diamond) needs to accommodate excessively wide loads (to 28' wide, ex: large boats, large haul truck beds) which are routed around via Van Horn Rd by the permit office.
- The Steese Chena River Bridge has been restricted for ANY overweight traffic for a few years now. Therefore, this bypass can be critically important to be designed as a bypass for oversize and overweight truck traffic: additionally, during any particular transport the permit office can require bypass around the Steese or Mitchell Expwy for any reason (ex. Construction activities) ... so this route should be minimized for any restriction. This is an industrial area of Fairbanks. Note: there are definitely height restriction issues on Van Horn (low lights), but this should be improved as possible to maintain this as the industrial route that it is advertised and utilized.
- Please note that all high power overhead main power lines (100KV + ?) require a full 4' of electrical clearance between the load height clearance and the sagging line, so please explore this with the power utilities to reduce "clearance" issues for design clearance through this project.

Thank you to all for your work and consideration to this point on this project! Thank you for your communication!!

How did you hear about this meeting? Email forwarded by an ATA member.

*Before including your address, phone number, e-mail address, or other personal identifying information in your comment, be advised that your entire comment –including your personal identifying information –may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

E-MAIL ADDRESS: _____ahoza@lynden.c om _____ C: 907-3889411

NAME: Alan Hoza, Lynden Logistics, Haul Road Safety Committee member

MAILING ADDRESS: 246 Brighton Dr., Fairbanks, AK 99712

For further information, please contact Colleen M. Ackiss, P.E., Engineering Manager, at (907) 451-5179 or email: colleen.ackiss@alaska.gov. To correspond by text telephone (TDD), please call (907) 451-2363. Please return comments by January 25, 2019.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the Alaska DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PF.

OVERPASSING FACILITY	STATE HIGHWAY			PEDES- TRIAN		воттом		Cer auverter Alastric Tournual	
	INTER- CHANGE	GRADE SEPARATION	ROADS OR STREETS	RAIL- ROAD	STRUC- TURES	SIGN BRIDGES	SIGNAL HOUSING	OVERHEAD UTILITIES	
LOCAL ROADS OR STREETS	16 ft - 6 in.		16 ft - 6 in. **		17 ft - 6 in.	18 ft - 6 in.	17 ft - 6 in.	20 ft - 6 in.	Table 1130-1 Vertical Clearance
STATE HIGHWAY	*	16 ft - 6 in. *			*		*		Table 1130-1 rtical Cleara
RAILROAD	23 ft							27 ft - 6 in.	arance
PEDESTRIAN FACILITY	8 ft - 6 in.								
FAGILITY		income for futuro roc	urfacing of the r	roadway.					Brisher GON austra. GON

* Need changed

Alaska Highway Preconstruction Manual

1130-5

1130. Cross Sections Effective January 1, 2005

COMMENT SHEET

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 December 19, 2018 – January 25, 2019 On-Line Open House

We welcome written input and ideas from the public. Thank you for taking the time to be involved. (If you need more space please use second sheet.)

COMMENTS:

Modified Diamond Concept is not economically feasible. Over 700,000 ton of borrow went in to building moose creek overpass. You would over double that quantity and increase trucking/impacts to roads outside the project. The flyover will reduce the amount of borrow and trucking and reduce overall time to construct the project. I am not sure if there is enough real estate but planning or building a full bypass detour that would allow you to build both phases of the overpass at once will allow for the overpass to be done in one season. This would require the railroad building a temporary crossing with temporary signals but would eliminate phasing of the overpass, temp paint, a phasing wall for the MSE wall. If one side is built at a time only one bridge would be installed in a season, making it a two year process. A phasing wall would need to be planned to eliminate undermining the MSE wall straps when constructing phase 2. - Consideration would also have to go into the toe of the phase 1 slope and temporary barriers probably needed to protect traffic below as it would probably be in the clear zone. Design in the temporary crossovers and excavation detail for the MSE wall footing in relationship to the railroad track. Based on the Moose Creek Overpass, if the wall is at least 27' away from center of track and not more than 13' below track elevation, therno shoring would be required. This would reduce costs for the project. Factor in soil on the slopes in order to obtain stabilization, otherwise the slopes will not retain any water/nutrients and will be a SWPPP nightmare and will result in calling the slopes low erodable. Watch guardrail for mainline and make sure if accounts for the overheight vehicle bypass. Look at using select B in the embankment where feasable. Would allow for closer material sources to possibly be used reducing costs. 3d model the design. We, as contractors model all projects once awarded. It allows us to catch design errors as well as plug the design into our rover and machines. Makes QA with the State really easy. I am sure a lot of this is already accounted for, but we have seen all these issues and would like to work to help reduce the amount of change orders on a project.

How did you hear about this meeting? E-mail

*Before including your address, phone number, e-mail address, or other personal identifying information in your comment, be advised that your entire comment –including your personal identifying information –may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

E-MAIL ADDRESS: travis.malin@hccontractors.net

NAME: Travis Malin

MAILING ADDRESS: PO Box 80688, Fairbanks, AK 99708

For further information, please contact Colleen M. Ackiss, P.E., Engineering Manager, at (907) 451-5179 or email: colleen.ackiss@alaska.gov. To correspond by text telephone (TDD), please call (907) 451-2363. Please return comments by January 25, 2019.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the Alaska DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PF.

COMMENT SHEET

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 December 19, 2018 – January 25, 2019 On-Line Open House

We welcome written input and ideas from the public. Thank you for taking the time to be involved. (If you need more space please use second sheet.)

COMMENTS:

After hearing the presentation last Thursday. I believe the Flyover Concept makes the most sense. I think it allows for the smoothest flow of traffic, especially for the oversize loads that get routed to Van Horn Rd. via the Old Richardson Hwy. I am a strong proponent of overhead clearance at 18'6". I have personally moved quite a number of modules and large boats that exceeded 18' in height, and even though loads like that aren't necessarily common, they do exist. And while we do have structures in place right now that don't have that much overhead clearance, most of them are older and, in some cases, due to be replaced in a few years. In any case, it doesn't make good sense to construct anything new on the corridors between Anchorage or Valdez and the Prudhoe Bay oilfield that would restrict or limit the movement of essential items and equipment. I believe that 18' should be a minimum overhead clearance, with 18'6" being an even better option to help avoid costly bridge strikes.

I am pleased that you have designed an overheight bypass. Any southbound overheight loads coming from the Mitchell Expressway do not have a bypass and the 18'6" clearance would be important in those cases.

Alan Hoza and I have worked together on quite a few oversize movements over the years and have spent time going over your presentation for this project. Alan will no doubt go into a lot more detail on his comments, and I strongly concur with his thoughts and ideas.

Thank you all for your efforts and for reaching out to those of us in the industry. We appreciate you!

How did you hear about this meeting? Email from ATA

*Before including your address, phone number, e-mail address, or other personal identifying information in your comment, be advised that your entire comment –including your personal identifying information –may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

E-MAIL ADDRESS: jbinder@lynden.com

NAME: Jack Binder, Alaska West Express, Special Projects/HSSE

MAILING ADDRESS: 1095 Sanduri St., Fairbanks, AK 99701

For further information, please contact Colleen M. Ackiss, P.E., Engineering Manager, at (907) 451-5179 or email: colleen.ackiss@alaska.gov. To correspond by text telephone (TDD), please call (907) 451-2363. Please return comments by January 25, 2019.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the Alaska DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PF.

From:	Ackiss, Colleen M (DOT)
Sent:	Tuesday, February 12, 2019 11:59 AM
To:	Jackson Hurst
Subject:	RE: Sign up for project updates and construction updates and be added to the mailing
	list for the Richardson Highway MP 359 Interchange and Railroad Grade Separated
	Facility Project

Hello Jackson -

Thank you for your interest in the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility project. Unfortunately, there is no mailing list for this project. The best way to stay informed of updates is to frequent the project website at:

http://dot.alaska.gov/nreg/rich359/

Please contact me if you have any questions regarding the design development of this project.

Thank you.

Colleen Ackiss, P.E. Engineering Manager State of Alaska DOT&PF – Northern Region 907-451-5179

From: Jackson Hurst [mailto:ghostlightmater@yahoo.com]
Sent: Wednesday, January 30, 2019 9:05 AM
To: Ackiss, Colleen M (DOT) <colleen.ackiss@alaska.gov>
Subject: Sign up for project updates and construction updates and be added to the mailing list for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project

Hi I would like to sign up for project updates and construction updates and be added to the mailing list for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Project. My mailing address is 4216 Cornell crossing, kennesaw, Georgia, 30144

Sent from ghostlightmater@yahoo.com

COMMENT SHEET

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility Z607340000 / 0A24033 December 19, 2018 – January 25, 2019 On-Line Open House

We welcome written input and ideas from the public. Thank you for taking the time to be involved. (If you need more space please use second sheet.)

COMMENTS:

I (and most drivers I surveyed) favor the Flyover Concept). It appears to be the least impactful for truck flow – with minimized maneuvering, which can enhance oversize vehicle movements.

- We would like to see an 18'6" clearance under the Flyover. We realize there is an overheight bypass, however, having a higher clearance on the main route can minimize any accidental miss-measurements, or complacent driving – so why would we not build in a more reasonable height to aid in minimizing any strike potentials! This would allow the flow impact in/out of traffic in/out of the bypass to the extreme over-height loads only – which is more appropriate. There are more of these loads in the on the verge of exceeding 17'6" than perhaps even the permit office is aware of.
- This is the main route from the port terminal in Valdez to the Prudhoe Bay oilfields. I feel that it would be unwise to limit the height on this Flyover. I do realize there are other restrictions (Big Delta Tanana River bridge, etc.), however, there have been much discussion between DOT, big oil companies, and industry that perhaps some of those limiting structures should be improved for future projects (ex. Gas line or any other future). So why would we limit this main inbound route into Fairbanks (and on north) for a couple feet of height (my opinion is 18' min)?? This would also drastically decrease the potential for any future bridge strikes!!
- Note: in the AK Highway Preconstruction Manual, 1130-5 Cross Sections (Table 1130-1 Vertical Clearance): there is a footnote "**" which states "From the Port of Anchorage to the North Slope the clearance of roadways underpassing railroads shall be 18 ft.". This footnote was a result of discussions of transports which had caused intensive modifications to pass under the underpass just south of Riley Creek near the Denali Park entrance. The ARRC decided to set the clearance. Also note that the Denali Region also cut the clearance to nearly 19' under that RR overpass, due to these transports as well. Further note: The State Highway section of the table needs to be updated to a min. of 18' (min.) to account for the post 2005 legal height increase from 16'6" to 17'6" on main highways.
 - Also: at least three of the largest carriers of oversize transports have blanket utility clearances with the permit office which allow for 18'0, reducible to 17'6, from Port of Anchorage and Port of Valdez to the North Slope. It is quite difficult for these 18' loads to be reduced all the way to 17'6, however, it is reasonable for them to be reduced to $\sim 17'10$ " by simply releasing the air in their suspensions. To maintain an 18' min clearance would be reasonably acceptable to the industry so why would we not target 18'6" to allow for snowpack, etc.?

- The Flyover (or underpass if Modified Diamond) needs to accommodate excessively wide loads (to 28' wide, ex: large boats, large haul truck beds) which are routed around via Van Horn Rd by the permit office.
- The Steese Chena River Bridge has been restricted for ANY overweight traffic for a few years now. Therefore, this bypass can be critically important to be designed as a bypass for oversize and overweight truck traffic: additionally, during any particular transport – the permit office can require bypass around the Steese or Mitchell Expwy for any reason (ex. Construction activities) ... so this route should be minimized for any restriction. This is an industrial area of Fairbanks. Note: there are definitely height restriction issues on Van Horn (low lights), but this should be improved as possible to maintain this as the industrial route that it is advertised and utilized
- Please note that all high power overhead main power lines (100KV + ?) require a full 4' of electrical clearance between the load height clearance and the sagging line, so please explore this with the power utilities to reduce "clearance" issues for design clearance through this project.

Thank you to all for your work and consideration to this point on this project! Thank you for your communication!!

How did you hear about this meeting? Email forwarded by an ATA member.

*Before including your address, phone number, e-mail address, or other personal identifying information in your comment, be advised that your entire comment -including your personal identifying information -may be made publicly available at any time. While you can ask us in your comment to withhold from public review your personal identifying information, we cannot guarantee that we will be able to do so.

E-MAIL ADDRESS: _____ahoza@lynden.com C: 907-388-9411

Alan Hoza, Lynden Logistics, Haul Road Safety Committee member NAME:

MAILING ADDRESS: 246 Brighton Dr., Fairbanks, AK 99712

For further information, please contact Colleen M. Ackiss, P.E., Engineering Manager, at (907) 451-5179 or email: colleen.ackiss@alaska.gov. To correspond by text telephone (TDD), please call (907) 451-2363. Please return comments by January 25, 2019.

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are

The environmental review, consultation, and other actions required by applicable rederal environmental laws for this project are being, or have been, carried out by the Alaska DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated November 3, 2017 and executed by the FHWA and DOT&PF. This IS a very critical rout as it is our oversized Last option This IS a very critical rout all there wates to memorants? -thank " I aque also! Atterpitot car egmait.com Daig Widdis

From:	Donald Galligan <dgalligan@fnsb.us></dgalligan@fnsb.us>
Sent:	Thursday, January 31, 2019 11:51 AM
То:	Ackiss, Colleen M (DOT)
Cc:	Anderson, Ryan (DOT); Christine Nelson; Kellen Spillman
Subject:	Comments on the Richardson Highway 359 Interchange and Railroad Grade Separated
	Facility
Attachments:	MP359 Interchange Comments 31Jan2019.pdf
Follow Up Flag:	Follow up
Flag Status:	Completed

Attached please find the Borough's official comments on this project as presented.

Thank you for the opportunity to provide comment.

Don

Donald C. Galligan, Jr. AICP | Planner IV—Transportation <u>Fairbanks North Star Borough</u> | <u>Community Planning</u> 907.459.1272 (direct) | 907.459.1260 (department) <u>dgalligan@fnsb.us</u> |

Fairbanks North Star Borough

Mayor's Office

907 Terminal Street P.O. Box 71267 Fairbanks, AK 99707-1267 T.(907)459-1300 F.(907)459-1102

January 31, 2019

Colleen Ackiss State of Alaska Department of Transportation & Public Facilities 2301 Peger Rd Fairbanks, AK 99709

Re Comments on the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility.

Dear Ms. Ackiss,

The Fairbanks North Star Borough (FNSB) appreciates the opportunity to submit comments regarding the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility. Please accept these as the official comments from the FNSB Administration.

The FNSB attended the January 24, 2019 Stakeholders Meeting at DOT Northern Region offices including review of the two alternatives that are currently under consideration for further development. The FNSB has worked diligently over the last 12 years to ensure that Alaska Railroad (ARRC) projects are planned and developed consistent with the goal of re-routing the ARRC to a southerly alignment around the heart of Fairbanks. This effort began in earnest with a June 25, 2007 MOU between the FNSB and the ARRC (Attached) agreeing in principal to preserving a corridor for future railroad realignment.

Our concern is that the current design for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility is inconsistent with the Fairbanks Area Rail Line Relocation Project, is inconsistent with the FNSB Regional Comprehensive Plan, and is inconsistent with the approved Alaska State Rail Plan.

The project is inconsistent with the following sections of the FNSB Regional Comprehensive Plan:

Land Use, Goal 4, Strategy 11, Action C: Pursue an appropriate realignment route for the Alaska Railroad that will meet both the needs of the military and the Borough; and Transportation and Infrastructure, Goal 1, Strategy 5, Action A: Encourage a reroute of the railroad to reduce the number of at-grade railroad crossings; create separate grade crossings for the remainder, when possible.

This inconsistency is relevant because local planning authority approval rests with the FNSB Planning Commission. This project as proposed does not incorporate and facilitate the long term vision for our community, and indeed recommends putting the infrastructure in place, that may preclude the achievement of our long-term vision.

The project is inconsistent with the approved Alaska State Rail Plan, which specifically calls out the Richardson Highway: MP 359 Railroad Crossing Overpass as an aspect of the Fairbanks Area Rail Line Relocation (1.2.3.2). This plan is "to serve as the basis for federal and state rail

investments within the state," and as you are aware, AS 44.42 assigns the DOT the responsibility to plan for all modes of transportation. The FNSB would not have actively supported this project over its history without the understanding that it was an aspect of the overall Fairbanks Area Rail Line Relocation project.

Finally, the Project may be inconsistent with the Fairbanks Area Rail Line Relocation Project because the geometry of the proposed crossing may preclude a transition with the rail line headed south towards North Pole.

In the past, the FNSB has supported this project in multiple comments to the State with the understanding that it would be an aspect of the Fairbanks Area Rail Line Relocation project. On at least three separate occasions, the FNSB submitted comments supporting the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility to the DOT.

In a May 7, 2014 letter signed by Mayor Hopkins, the FNSB expressed appreciation with the inclusion of this project in the State Transportation and Improvement Program (STIP) and asked for a secure funding source for the project. On August 7, 2014, Mayor Hopkins commented again with concern for funding of this project. Then, on August 18, 2016 in a letter signed for Mayor Kassel, the FNSB commented on how funding for the project had been moved out past 2019 and reiterated the importance of this "priority project" in the State Rail Plan as an aspect of the Fairbanks Area Rail Relocation State II Project.

The 2007 MOU between the ARRC and the FNSB demonstrates the long term goal of both parties to move rail traffic out of the core of the community and relocate it south of town. MP 359 of the Richardson Highway is a key aspect of transitioning between phase 2 and phase 3 of this relocation and this overpass appears to preclude using it as this approved transition point.

This project is very important to the FNSB not only for the safety improvements on the Richardson Highway, but also for the long-term viability of the rail relocation project. The FNSB requests that the DOT show in this document that this long term rail realignment project was seriously considered and addressed through the design process, and that the overpass design can accommodate and, at a minimum, not preclude using this overpass as an aspect of the Fairbanks Area Rail Line Relocation project as envisioned and agreed to by all parties.

Thank you for your consideration. We hope that this project can move forward in a way that supports the longer term vision of realignment of the rail line around Fairbanks.

Sincerely: Bryce Ward

Bryce Ward Mayor Fairbanks North Star Borough

Attachments (MOU)

MEMORANDUM OF UNDERSTANDING #I RECEIVED 518 FAIRBANKS NORTH STAR BOROUGH TIME 4:00 2m ALASKA RAILROAD CORPORATION

FNSB CLERK'S OFFICE

25 June 2007

THE PURPOSE OF THIS MOU

Alaska Railroad Corporation (ARRC) and Fairbanks North Star Borough (FNSB) desire to optimize the alignment of the Alaska Railroad within the Fairbanks-North Pole area to improve safety, customer response, and minimize transportation conflicts within the adjacent communities. ARRC and FNSB agree to commence defining a new rail corridor from the west side of Fairbanks near Sheep Creek to the east side of North Pole near Moose Creek. This effort is hereby named the Fairbanks – North Pole Rail Realignment (F-NPR). Additionally, ARRC and FNSB will pursue a study to determine possible passenger transit services for the communities along the route.

OVERVIEW

Several major engineering studies have thoroughly investigated alternatives for rail realignment through the Fairbanks-North Pole area. One such segment, commonly known as the Ft. Wainwright Bypass, has been approved to provide Independent Utility and is proceeding with Department of Defense funding. It should be considered an interim route around Ft. Wainwright until such time as the F-NPR is completed.

The overall size and cost of the F-NPR is considerable and will almost certainly require that engineering, funding and construction be accomplished in phases, although these phases would be worked as simultaneously as possible. In recognition of the need for project clarity and considering that "phases" were used in previous studies over years past, a re-naming of proposed F-NPR segments is in order. The Richardson Highway Mile Post 9-North Pole project is clearly the least complex from both a financial and engineering point of view, and shall be called Phase 1. The safety benefits resulting from the Richardson Highway Mile Post 9 to North Pole phase are very substantial. Public transit is a distinct possibility for Phase 1. The NEPA process for Phase 1 can be accomplished expediently by relying on the engineering effort and environmental studies conducted to date. Securing independent utility in order to set the scope of study for NEPA looks to be a possible strategy for proceeding with Phase 1 and if determined to be viable will be supported by the FNSB.

ARRC will continue the alternative analysis engineering study for the area from Richardson Highway Mile Post 3 to Richardson Highway Mile Post 9 (Phase 2) and for the remaining realignment segment west of Phase 2 past the Chena River (Phase 3). Phase 1 should be first priority among the three phases.

Phase 1 Considerations

The existing Tanana River Levee provides a feasible realignment corridor for the railroad that the partners believe would improve safety, minimize traffic conflicts and optimize freight/transit through the area. The Tanana River Levee was constructed by the US Army Corps of Engineers (COE) and is now the responsibility of the FNSB. As part of Phase 1 the FNSB and the ARRC will develop a no-fee "exclusive use casement" right of way and work cooperatively with permitting authorities to ensure use of the area on or near the levee as a rail corridor through a right-of-way agreement. Maintaining

the structural integrity of the rail/levee combination is essential, is in the vital interest of all parties, and must not be compromised. The addition of a railroad on or near the levee could also be used to improve the structural integrity of the levee. As the railroad is realigned to the levee, with the approval of the COE where necessary, the ARRC could assume the FNSB's responsibility for maintenance of the levee in accordance with the COE agreements.

Once the railroad and engineering design for the levee commences, the ARRC and FNSB will seek public input and identify opportunities to enhance recreational trails. The FNSB has a designated recreational trail in the levce area that is largely undeveloped and its ungrade could be an integral part of the project. ARRC would provide access to the river-side of the levee where appropriate. ARRC and FNSB will cooperate to mitigate personal and vehicle access issues arising from the new railroad location. Access is expected to be approved for certain designated locations and will generally coincide with section lines and/or major roadway alignments. FNSB will support ARRC efforts to obtain required Federal approvals, such as "4(f)", which addresses impacts to recreational trails.

Any railroad right-of-way to be completely vacated by F-NPR will trigger statutory evaluation for possible reversion, beginning with North Pole in Phase 1.

Phase 2 and Phase 3 Considerations

As the ARRC progresses on the design and construction of Phase 1, efforts will turn to the west. The FNSB and the ARRC will aggressively pursue funding for planning and design of Phases 2 and 3 of the F-NPR.

This MOU demonstrates that the long term goal of both parties is to move rail traffic out of the core of the community and relocate it south of town. The parties acknowledge that while a "no build" option will be considered under every phase, one purpose of this MOU is to articulate the parties' agreement that routes south of Fairbanks are preferred solutions over increasing speeds or elevating rail traffic through the Trainor Gate -New Steese - Old Steese areas of town.

As each phase of railroad relocation develops, the ARRC and the FNSB can draw up further MOU's or right of way agreements as necessary to lock-in specific details for the subsequent project phases.

For the ALASKA RAILROAD CORPORATION

Patrick K Gamble President & Chief Executive Officer

For the FAIRBANKS NORTH STAR BOROUGH

Jim Whitaker

Mayor

From: Sent: To: Cc: Subject: Ackiss, Colleen M (DOT) Friday, February 15, 2019 1:41 PM Brian Lindamood Rachel Maddy; Blake Adolfae; Clark Hopp; Tim Sullivan RE: rich359-comment-sheet - ARRC 1.14.19.pdf

Brian -

Thank you for reply to my questions that were raised by the FNSB after a recent stakeholder meeting, it is greatly appreciated. The department is working on a response to Mayor Ward, and I believe that we have sufficient supporting documentation at this time to address all of his concerns/statements.

I don't anticipate that we will need further help on this issue at this time. We look forward to working together with you on this project.

Thank you. Colleen

From: Brian Lindamood [mailto:LindamoodB@akrr.com]
Sent: Monday, February 11, 2019 2:01 PM
To: Ackiss, Colleen M (DOT) <colleen.ackiss@alaska.gov>
Cc: Rachel Maddy <MaddyR@akrr.com>; Blake Adolfae <AdolfaeB@akrr.com>; Clark Hopp <Hoppc@akrr.com>; Tim
Sullivan <SullivanT@akrr.com>
Subject: FW: rich359-comment-sheet - ARRC 1.14.19.pdf

Ms. Ackiss-

The concern expressed by Mayor Ward affects one of several proposed options for a potential relocation of ARRC around Fairbanks. The Fairbanks Area Railroad Relocation (FARR) project has been considered for at least two decades, but to date, does not have a final proposed location culled from many different possible options, any schedule, nor any potential source of funding for what is estimated to be a project in the hundreds of millions of dollars (at least). Further, there has been no environmental document completed to date, and the right-of-way has not been secured for any of the proposed corridors that have been considered thus far. While the project is in the TIP, it is listed as illustrative, and the magnitude of the undertaking brings its ultimate completion into question.

Should the relocation project ever become a reality, the cost to reconfigure the proposed overpass, if even required, would be but a small fraction of the FARR project as a whole. ARRC is not as experienced as ADOT in the manner that FHWA deals with such considerations during the NEPA process. Therefore, how ADOT wishes to address this comment, or consider potential impacts to the FARR project, is up to you.

Please let us know if there is anything else we can help you with on this project.

Regards,

Brian Lindamood PE SE

Vice President, Chief Engineer

907-265-3095 office | 907-441-6088 mobile mailing: PO Box 107500, Anchorage, AK 99510-7500 physical: 327 W Ship Creek Ave, Anchorage, AK 99501 web: <u>www.AlaskaRailroad.com</u>

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or proprietary information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

From: Rachel Maddy Sent: Wednesday, February 06, 2019 11:58 AM To: Brian Lindamood Subject: FW: rich359-comment-sheet - ARRC 1.14.19.pdf

For your consideration and response. Let me know if there is anything I can do to help, thanks!

Rachel Maddy

Manager ROW & Public Projects

907-265-2237 office | 907-350-8442 mobile mailing: PO Box 107500, Anchorage, AK 99510-7500 physical: 327 W Ship Creek Ave, Anchorage, AK 99501 web: <u>www.AlaskaRailroad.com</u>

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or proprietary information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

From: Ackiss, Colleen M (DOT) <<u>colleen.ackiss@alaska.gov></u> Sent: Thursday, January 31, 2019 5:05 PM To: Rachel Maddy <<u>MaddyR@akrr.com></u> Subject: RE: rich359-comment-sheet - ARRC 1.14.19.pdf

Good afternoon Rachel -

Can you confirm that the options proposed for the subject project, with respect to the railroad crossing, is consistent with the Fairbanks Area Rail Line Relocation (FARLR) project?

Reviewing the information on the Alaska Railroad website, it appears that there are three options being considered for Phase II of the FARLR for the 3 Mile Gate Railroad Alignment. Option 2 appears to locate the overcrossing at the location and alignment of the existing tracks where it currently crosses the Richardson Highway. Options 1 and 3 are skewed crossings which would not fully utilize the existing track alignment.

The Fairbanks North Star Borough would like confirmation that the options presented "can accommodate and, at a minimum, not preclude using this overpass as an aspect of the Fairbanks Area Rail Line Relocation project". By selecting

Option 2 at this time, it may predetermine the option selected in advance of the further development of Phase II of the FARLR project. It doesn't appear that putting a structure that would accommodate both Options 1 and 2 would be fiscally responsible.

Prior to the Department approving our environmental document, we need to ensure that our proposed plans conform to existing Land Use and Transportation Plans. We intend to rely on this email to confirm our shared understanding that the project is consistent and meets the intent of the FARLR.

I have attached the comments received from the Fairbanks North Star Borough for your reference/information.

Please call me if you would like to discuss or have additional questions regarding this request.

Thank you. Colleen

From: Rachel Maddy [mailto:MaddyR@akrr.com] Sent: Monday, January 14, 2019 5:33 PM To: Ackiss, Colleen M (DOT) <<u>colleen.ackiss@alaska.gov></u> Cc: Rachel Maddy <<u>MaddyR@akrr.com></u> Subject: rich359-comment-sheet - ARRC 1.14.19.pdf

Colleen,

As requested, ARRC's comments for the public open house on the Rich 359 project.

Let me know if you have any questions, thanks!

Rachel Maddy

Manager ROW & Public Projects

907-265-2237 office | 907-350-8442 mobile mailing: PO Box 107500, Anchorage, AK 99510-7500 physical: 327 W Ship Creek Ave, Anchorage, AK 99501 web: www.AtaskaRailroad.com

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or proprietary information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

From: Sent: To: Cc: Subject: Anderson, Ryan (DOT) Thursday, March 07, 2019 9:18 AM Lund, Michael C (DOT) Ackiss, Colleen M (DOT) RE: Rich 359 FNSB/ARRC Environmental Comments

Mike/Colleen -

After discussions with Mayor Ward yesterday, I think all the information needed is already in the letter that has been prepared, and we can simplify the letter quite a bit by focusing on these statements:

- DOT&PF supports the Fairbanks Area Rail Line project, and DOT&PF has considered the plan in our design.
- The current design achieves the near term goals of improving safety on the Richardson Highway, and accommodates Alternative #2 from the rail plan.
- This project does not preclude future railroad crossing alternatives described in the plan from being constructed, recognizing that the other alternative crossings are a long term goal of the plan.

After my discussions it was clear that Mayor Ward understands the project scope and the Fairbanks Rail Line project very well. If we focus on the points above, the Mayor is amenable to agreeing that the current project is in line with both the FNSB Regional Comprehensive Plan and the approved Alaska State Rail Plan.

Hope that helps.

Ryan

From: Lund, Michael C (DOT) Sent: Wednesday, February 27, 2019 1:49 PM To: Anderson, Ryan (DOT) <ryan.anderson@alaska.gov> Cc: Ackiss, Colleen M (DOT) <colleen.ackiss@alaska.gov> Subject: Rich 359 FNSB/ARRC Environmental Comments

Hi Ryan,

Did you have any comments or concerns regarding the FNSB's letter, and our draft response?

We'd like to get this resolved so we can move forward with completing the environmental document.

Thanks, Mike

Michael C. Lund, P.E.|Project Delivery Lead|DOT&PF Northern Region 2301 Peger Road; Fairbanks, AK 99709|ph: 907.451.5067|CELL 907.712.4579| fax: 907.451.5487| <u>MICHAEL LUND@ALASKA GOV</u>

Connect with ADOT&PF: Like | Follow | Watch

Department of Transportation and Public Facilities

> NORTHERN REGION Design & Engineering Services

> > 2301 Peger Road Fairbanks, Alaska 99709-5388 Main: 907.451-2273 Fax: 907.451-5126 TDD: 907-4551-2363 dot.alaska.gov

March 18, 2019

The Honorable Bryce J. Ward, Mayor Fairbanks North Star Borough PO Box 71267 Fairbanks, AK 99707-1267

Dear Mayor Ward:

Re: Richardson Highway MP 359 Interchange and Railroad Grade Separation Facility Z607340000/0A24033

Thank you for providing comments and expressing your concerns regarding the Railroad Grade Separated Facility portion of this project. We identified six issues/concerns in your similar letters dated January 31, 2019 and March 1, 2019. These issues are addressed below, and clarify the project's consideration of identified local planning documents.

Attached are a few figures which will be referenced in the discussion below:

- Flyover Concept: This is one of the design concepts under consideration for the subject project.
- Modified Diamond Concept: This is the other design concepts under consideration for the subject project.
- Option 1 from 3 Mile Gate Railroad Alignment Study (Highway Overpass)
- Option 2 from 3 Mile Gate Railroad Alignment Study (Highway Overpass)
- Option 3 from 3 Mile Gate Railroad Alignment Study (Railroad Overcrossing)

<u>FNSB concern/statement #1:</u> Our concern is that the current design for the Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility is inconsistent with the Fairbanks Area Rail Line Relocation Project, is inconsistent with the FNSB Regional Comprehensive Plan, and is inconsistent with the approved Alaska State Rail Plan.

<u>DOT&PF response</u>: The two design concepts under consideration for the subject project are the Flyover Concept and Modified Diamond Concept (see attachments). Both of these concepts recommend interchanges at the intersection of the Richardson Highway and Old Richardson Highway, as well as a highway overcrossing at the 3 Mile Gate railroad crossing perpendicularly spanning the existing tracks.

"Keep Alaska Moving through service and infrastructure."

The Fairbanks Area Rail Line Relocation Project (FARLRP) consists of 3 phases:

- Phase 1 from Rich 9-Mile to southeast North Pole near Moose Creek (also known as the North pole Road/Rail Crossing Reduction Project.
- Phase 2 from Rich 9-Mile to 3-Mile Gate.
- Phase 3 from the area west of 3-Mile Gate to past the Chena River. The subject project falls within the limits of Phase 2.

Phase 2 is in the preliminary study phase, with the most recent study identifying 3 potential options: Option 1, 2, and 3 of the 3 Mile Gate Railroad Alignment Study (see attachments). While no option has been selected yet, the proposed project is consistent with potential Option 2 -construction of perpendicular highway overcrossing at the existing 3 Mile Gate railroad crossing.

The proposed project will address safety and operational concerns in the MP 359 area of the Richardson Highway. The project proposes a grade separation at the existing 3 Mile Gate railroad crossing location which is consistent with FNSB Regional Comprehensive Plan, Transportation and Infrastructure Goal 1, Strategy 5, Action A of creating grade separated crossings railroad crossings for those that are not eliminated through reduction. No realignment route has been finalized in Phase 2 of the FARLRP; however, the design concepts proposed for the project are consistent with potential Option 2 of the FARLRP.

The Alaska State Rail Plan references the FARLRP and indicates that the environmental document for Phase 1 is complete, but there is no funding for final design and construction. Phase 2 and Phase 3 are in the very preliminary stages of development. In recent correspondence the ARRC has indicated that, "The Fairbanks Area Railroad Relocation (FARR) project has been considered for at least two decades, but to date, does not have a final proposed location culled from many different possible options, any schedule, nor any potential source of funding for what is estimated to be a project in the hundreds of millions of dollars (at least). Further, there has been no environmental document completed to date, and the right-of-way has not been secured for any of the proposed DOT&PF project is inconsistent with the Alaska Rail Plan based on this information. However as noted above, the proposed concepts are consistent with potential Option 2 which has been identified as a viable option.

<u>FNSB concern/statement #2:</u> This project as proposed does not incorporate and facilitate the long term vision for our community, and indeed recommends putting the infrastructure in place, that may preclude the achievement of our long-term vision.

<u>DOT&PF response</u>: As noted above, Phase 2 of the FARLRP has not been developed to the point that a final proposed location has been identified from the different possible options studied to date. However, the proposed concepts are consistent with potential Option 2.

<u>FNSB concern/statement #3:</u> The project is inconsistent with the approved Alaska State Rail Plan, which specifically calls out the Richardson Highway: MP 359 Railroad Crossing Overpass as an aspect of the Fairbanks Area Rail Line Relocation (1.2.3.2).

DOT&PF response: The Alaska State Rail Plan states, under 1.2.3.2, that FMATS 2045 Metropolitan Transportation Plan (FMATS MTP) Project SR-42 (Richardson Highway: MP 359 Railroad Crossing Overpass) is a component of the FARLRP. FMATS MTP describes planned project SR-42 as "Construct a grade-separated railroad crossing at MP 359 of the Richardson Highway and a pedestrian underpass east of the railroad crossing." The Richardson MP 359 Interchange and Railroad Grade Separated project design concepts include a grade-separated railroad crossing with a pedestrian underpass on the east side of the railroad crossing; therefore, the project is consistent with section 1.2.3.2 of the Alaska State Rail Plan.

<u>FNSB concern/statement #4:</u> Finally, the Project may be inconsistent with the Fairbanks Area Rail Line Relocation Project because the geometry of the proposed crossing may preclude a transition with the rail line headed south towards North Pole.

<u>DOT&PF response</u>: Please refer to attached Options 1, 2, and 3 of the 3 Mile Gate Railroad Alignment Study; the rail line headed south towards North Pole is on the north side of the Richardson Highway and does not cross the highway at this location currently, nor in any of the options considered. The geometry of the proposed crossing (see attached Flyover and Modified Diamond Concepts) does not preclude a transition with the rail line headed south towards North Pole.

<u>FNSB concern/statement #5:</u> *MP 359 of the Richardson Highway is a key aspect of transitioning between phase 2 and phase 3 of this relocation and this overpass appears to preclude using it as this approved transition point.*

DOT&PF response: The project's design concepts do not preclude using the proposed overpass as a transition point between phase 2 and phase 3 of the FARLRP. As previously noted, the project's design concepts are consistent with Option 2 of the 3 Mile Gate Railroad Alignment Study. ARRC has stated to DOT&PF, "The Fairbanks Area Railroad Relocation (FARR) project ... to date, does not have a final proposed location culled from many different possible options, any schedule, nor any potential source of funding for what is estimated to be a project in the hundreds of millions of dollars (at least). Further, there has been no environmental document completed ... Should the relocation project ever become a reality, the cost to reconfigure the proposed overpass, if even required, would be but a small fraction of the FARR project as a whole."

<u>FNSB concern/statement #6:</u> FNSB requests that the DOT show in this document that this long term rail realignment project was seriously considered and addressed through the design process, and that the overpass design can accommodate and, at a minimum, not preclude using this overpass as an aspect of the Fairbanks Area Rail Line Relocation project as envisioned and agree to by all parties.

Richardson Highway MP 359 Interchange And Railroad Grade Separation Facility Z607340000

DOT&PF response: As stated above the FARLRP project is in the preliminary stages for Phase 2 and no finalized location or design option has been selected from the many different possible options that have been proposed/studied to date. DOT&PF's proposed project is consistent with Option 2 and does not preclude using the proposed grade separated facility as an aspect of the FARLRP. Further ARRC has stated "While the project is in the TIP, it is listed as illustrative, and the magnitude of the undertaking brings its ultimate completion into question." and "Should the relocation project ever become a reality, the cost to reconfigure the proposed overpass, if even required, would be but a small fraction of the FARR project as a whole."

DOT&PF is committed to developing projects that balance the needs of the public and stakeholders while considering environmental impacts, including consistency with land use and transportation plans. In this case, when portions of a transportation plan have not been completed, we strive to provide design concepts which are consistent with preliminary plan studies and that do not preclude implementing a different design option in the future as the transportation plan is finalized or refined. Features included in this project are consistent with the Alaska Rail Plan, proposed Option 2 of Phase 2 of the FARLRP, the FMATS MTP, and the FNSB Regional Comprehensive Plan.

Your concerns/statements and our responses will be included in the project's environmental document to be completed this spring. The Department looks forward to progressing this project to the Design Study Report/Local Planning Approval stage in a continuing cooperative spirit with the Fairbanks North Star Borough. Sincerely,

Collew Machin

Colleen M. Ackiss, P.E.

Enclosure: as stated

Flyover Concept

FUTURE ACCESS PROVISION OVER-HEIGHT VEHICLE BYPASS 12,19,201

Modified Diamond Concept

EXISTING ROADWAY

I S S S S S S S FUTURE ACCESS PROVISION

12.19.2018

APPENDIX C

TRAFFIC ANALYSES AND SPEED STUDIES

TECHNICAL MEMORANDUM

Richardson Highway MP 359 Grade Separated Facility

Existing and Background Traffic Conditions and Safety Analysis

Technical Memorandum #1

		KAI Project #: 19230
Date:	June 2, 2017	Federal/State Project #:
		0A24(033)/60734
To:	James Potts, PE; CH2M	
From:	Andrew Ooms, PE; Jamie Markosian, EIT; and Gary Katsion, PE	

This memorandum provides an evaluation of the current traffic operations and safety in the area of the Richardson Highway/Old Richardson Highway intersection, as well as the no-build alternative analysis for a future design year of 2040. This memorandum includes the following:

- Description of the project and study area.
- Operational analysis for existing (2016) and future (2040) no-build scenarios on mainline segments of the Richardson Highway and the Richardson Highway/Old Richardson intersections (northbound and southbound).
- Safety analysis of the study area roads and intersections.

PROJECT DESCRIPTION

The Alaska Department of Transportation and Public Facilities (DOT&PF) has developed a Planning and Environmental Linkages (PEL) study for the Richardson Highway/Steese Expressway in the Fairbanks North Star Borough (FNSB) (Reference 1). Within the PEL, The Richardson Highway was evaluated, along with the Steese Expressway, to identify deficiencies and to be broken into smaller project improvements that have been incorporated into the Fairbanks Metropolitan Area Transportation (FMATS) Metropolitan Transportation Plan (MTP) (Reference 2). The PEL study recommended a grade-separated facility on the Richardson Highway near milepost 359 to provide a grade-separated crossing of the Alaska Railroad tracks and to grade separate the northbound offramp from the Richardson Highway to the Old Richardson Highway.

Project Location

This study encompasses the section of the Richardson Highway from approximate milepost 358.5 to approximate milepost 360.5 and includes the Lakeview Drive exit off southbound Richardson Highway

and the at-grade intersection of Old Richardson Highway and Richardson Highway. Figure 1 shows the study area. As can be seen in Figure 1, this segment of the Richardson Highway is southeast of Fairbanks and bisects Fort Wainwright. The Richardson Highway serves as the main transportation route to Fairbanks from North Pole, Eielson Air Force Base (AFB), and communities further to the southeast. The land uses in the site vicinity are mainly a mix of industrial/commercial with residential to the southwest and Fort Wainwright to the north and southeast.

EXISTING CONDITIONS

The existing conditions analysis identifies the site conditions and current operational and safety conditions of the roadways within the study area. Figure 2 shows the current lane configurations and traffic control devices in the study area.

Roadway Facilities

Table 1 summarizes the existing transportation facilities and roadways in the study area.

Roadway	Functional Classification ¹	Number of Lanes	Posted Speed (mph)	Sidewalks	Bicycle Lanes	On-Street Parking
Richardson Highway	Interstate Highway	4-6 Lanes	60 ²	No	No ³	No
Old Richardson Highway	Minor Arterial	2-3 Lanes	45	No	No ³	No
Lakeview Drive	Local	2 Lanes	35	No	No ³	No

Table 1 Existing Facilities and Roadway Designations

¹ Per DOT&PF Statewide Functional Classification GIS Map (Reference 3).

² Speed limit was raised from 55 mph to 60 mph on August 31, 2016 in the study area.

³ No designated bicycle lanes, but cycling is permitted on roadway shoulder.

The Richardson Highway is the main route for users to travel between Fairbanks and North Pole, Eielson Air Force Base, and beyond. It is classified as an interstate highway by DOT&PF in the Statewide Functional Classification Map. The speed limit on this study segment was raised from 55 miles per hour (mph) to 60 mph on August 31, 2016. Old Richardson Highway is classified as a minor arterial and connects the Richardson Highway with the Cushman Business Area. Land uses along Old Richardson Highway are mainly commercial with some industrial. Lakeview Drive is a local road that serves a small residential area to the south of the study area, as well as several commercial and industrial facilities.

The existing intersection configuration serves two of the four possible movements. Old Richardson Highway to southbound Richardson Highway and northbound Richardson Highway to Old Richardson Highway are served via at-grade ramps. The southbound Richardson Highway to Old Richardson Highway movement is accommodated via the Lakeview Drive ramp at approximate MP 360.4. The Old Richardson Highway to northbound Richardson Highway movement is accommodated by the interchange at MP 361.

Pedestrian and Bicycle Facilities

No recent pedestrian and bicycle count data is available along the study area roadways. There are no sidewalks or marked bicycle lanes on any facility within the study area, however bicycle travel restrictions on the Richardson Highway were removed in the summer of 2015. Additional pedestrian and bicycle facility improvements are planned in the area with the Richardson Highway MP 357-362 Bicycle/Pedestrian Path project which is scheduled for construction in 2018.

Railroad Facilities

There is one at-grade railroad crossing in the study area. The Alaska Railroad Corporation (ARRC) has a spur crossing of the Richardson Highway at MP 359.2 that provides access to the mainline from industrial areas south of the highway. The rail crossing is controlled with reflective cross bucks and gates, overhead flashers, and advance flashers and striping. ARRC reports that two trains a day are typically scheduled from Monday to Thursday at approximately 6:00 a.m. and 11:00 p.m., with each train consisting of 10 to 30 cars.

Transit Facilities

FNSB operates three public transit lines in the immediate site vicinity, and can be seen in Exhibit 1. The Metropolitan Area Commuter System (MACS) Black and Green Lines use the Richardson Highway. The Purple line runs adjacent to the study area, with stops on the western end of the Old Richardson Highway. The Black Line serves as a commuter route for North Pole and Eielson AFB and does not go off the main line Richardson Highway. The Green Line uses both the Old Richardson Highway and the Richardson Highway with one scheduled stop in the study area at the intersection of the Old Richardson Highway and Lakeview Drive (Reference 4).

Exhibit 1 FNSB Metropolitan Area Commuter System Routes near Study Area (Reference 4)

Existing Traffic Operations

The existing traffic operations in the study area come from counts provided by DOT&PF and use data collected in June 2016. Supplemental vehicle counts were used from the permanent traffic recorder (PTR) at the old Fort Wainwright gate to the south of the study area to evaluate mainline Richardson Highway operations. Turning movement counts were not available for every leg of the study area intersections, so the available count data was supplemented by data from the PEL study.

The system-wide morning and evening weekday peak hours were found to occur from 7:00 a.m. to 8:00 a.m. and 5:00 p.m. to 6:00 pm, respectively. Figure 3 provides a summary of the existing turning movement counts for the weekday a.m. and p.m. peak hours. Figure 4 illustrates the existing freeway segment and merge/diverge segment operations within the study area.

Based on the existing conditions, all intersections, freeway segments, and merge/diverge sections operate at level of service (LOS) C or better except vehicles exiting the northbound lanes of Richardson Highway onto Old Richardson Highway experience the lowest LOS at D during the PM peak hour while waiting to cross southbound Richardson Highway. The stop-controlled crossing from the northbound Richardson Highway crossing the southbound Richardson Highway was treated as a modified minor street through movement to model the unique configuration. A headway gap of 4.1 seconds of a major street left-turn was used to replicate drivers evaluating gaps in a one-way traffic stream. The follow-up gap of 4.0 seconds from a minor street through movement was maintained to model the effect of the stop sign. This change reduces the calculated delay to better reflect existing

conditions and observed driver behavior. Freeway segment volumes on the Richardson Highway are highest in northbound lanes during the a.m. peak hour and in the southbound lanes during the p.m. peak hour. *Traffic operations worksheets are included in Attachment A*.

Safety Analysis

Crash analysis in the study area was performed to propose cost-effective measures to address correctable crashes. Crash histories were reviewed for trends and patterns that could potentially yield corrective opportunities.

Crash records were obtained from DOT&PF for the most recent available five-year period from January 1, 2008 to December 31, 2012. Intersection crash data was reviewed at the intersections within the study area and along the mainline segment of the Richardson Highway near the Alaska Railroad spur crossing. A summary of the available crash data in these locations is show in Table 2, below. *Expanded crash information is available in Attachment B*.

				Crash Typ	e			Severity				
Location	Angle	Side- swipe	Rear End	Head On	Run of Road/ Fixed Object	Ped/ Bike	Anim al	PDO	Minor Injury	Major Injury	Fatal	Total Crashes
NB Richardson Hwy Off-Ramp/SB Richardson Hwy	-	-	1	-	-	-	-	-	1	-	-	1
Old Richardson Hwy/ Lakeview Dr	4	-	-	-	3	-	0	5	2	-	-	7
Mainline Richardson Hwy (Milepost 359 – 360)	1	-	3	-	10	-	2	12	4	-	-	16

Table 2 Study Area Crash Summary (2008-2012)

The at-grade northbound Richardson Highway off-ramp onto Old Richardson Highway had one reported crash during the analysis period.

Four angle crashes were reported at the intersection of Old Richardson Highway/Lakeview Drive in the analysis period. One of these crashes involved an illegal u-turn. The remaining three angle crashes involved southbound vehicles failing to yield to two eastbound and one westbound vehicle.

The crashes on the mainline Richardson Highway were evenly split by direction with eight northbound and eight southbound crashes. Run off the road crashes were the primary crash type for the roadway segment. Of these 10 run off the road crashes, 9 occurred during snow and ice conditions and 5 reports stated the roadway surface was a factor. Additionally, 4 of the 10 crashes were reported to be due to unsafe speed, 2 involved an object in the road, and 1 driver fell asleep. None of the 10 run off the road crashes were identified based on crash location or direction.

Three crashes were reported within 300 feet of the Alaska Railroad at-grade spur crossing of the mainline Richardson Highway; however, these crashes were not noted to be directly related to the

presence of a train. The minor injury crashes were reported in correspondence with rear-end and animal crashes.

These reported crashes do not include any clear patterns of crash type or location likely to be responsive to engineering mitigations. The crash data analysis indicates that roadway surface and driver behavior are the primary factors for crashes in the study area. Therefore, no cost-effective engineering crash reduction treatments were identified.

FUTURE CONDITIONS

Future no-build traffic operations were evaluated to establish a vehicle operations baseline and to identify operations issues that may arise under future conditions. The future no-build scenario maintains the existing lane configurations and traffic control devices in the study area while including planned roadway projects and increasing the traffic volumes to match projected growth.

Future year 2040 traffic volumes were developed using the FMATS travel demand model outputs, which indicated a 1.5 percent annual linear growth rate over the analysis timeline. The model is being updated to include the planned Eielson AFB expansion, but this change is not reflected in the developed volumes. This annual growth rate was applied to the existing year 2016 traffic volumes to develop the future year 2040 volumes.

According to a review of the FMATS 2040 MTP, there are no further developments planned, aside from the improvements that have been identified from the aforementioned PEL study. The following projects have been identified by the FMATS MTP and include short-range (SR) and long-range (LR) projects (Reference 2):

- SR-42 *Richardson Highway MP 359 Railroad Overpass.* Construct a grade separated railroad crossing at MP 359 of the Richardson Highway and a pedestrian underpass east of the railroad crossing;
- SR-56 MP 356-362 Bicycle/Pedestrian Path (Richardson Hwy). Construct a paved bicycle/pedestrian path on the Richardson Highway between MP 356 362, starting from the Richardson Highway/Airport Way intersection, continuing along the Richardson Highway to the Badger Loop North Bound Ramp, and terminating at the Badger Road/Old Richardson Highway intersection;
- LR-29 Old Richardson Highway Interchange. Construct a grade-separated interchange at the intersection of Richardson Highway and Old Richardson Highway. Potential access to Fort Wainwright.

Figure 5 shows the projected turning movement volumes and operations for the study area intersections while Figure 6 illustrates the freeway and merge/diverge segment operations within the study area.

The addition of the background 1.5 percent annual growth rate provides some deterioration in the year 2040 traffic conditions. Figure 5 illustrates the effects from this increased volume in several turning movements. The left turn from northbound Richardson Highway onto Old Richardson Highway is forecast to experience LOS F during the a.m. and p.m. peak hours. Additionally, the volume-to-capacity ratio (v/c) is forecast to be over 1.0 during the p.m. peak hour.

Figure 6 illustrates that the freeway and merge/diverge segments are performing acceptably with LOS C or better on all facilities. *Future traffic operations worksheets are included in Attachment C.*

June 2017

NEXT STEPS

The existing and background traffic conditions and safety analysis will be used in the development of alternatives to address identified deficiencies. A subsequent memorandum will document the alternatives development and the future operations and safety performance of each alternative.

REFERENCES

- 1. DOWL. *Richardson Highway/Steese Expressway Corridor Planning and Environmental Linkages Study Report.* April 2015.
- 2. Kittelson & Associates, Inc. Fairbanks Metro 2040 "A Roadmap to 2040". January 2015.
- 3. Alaska Department of Transportation and Public Facilities. <u>http://www.dot.state.ak.us/stwdplng/fclass/fclassmaps.shtml</u>. Accessed September 10, 2016.
- 4. Fairbanks North Star Borough Metropolitan Area Commuter System. http://fnsb.us/transportation/Pages/MACS.aspx. Accessed September 15, 2016.
- 5. Alaska Department of Transportation and Public Facilities. *Alaska Highway Preconstruction Manual.* November 2013.

Attachment A Existing Year 2016 Traffic Conditions Worksheets

101: Lakeview Dr & Old Richardson Hwy

Year 2016 Traffic Conditions AM Peak Hour

	٦	-	$\mathbf{\hat{F}}$	¥	+	×.	1	t	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢î		۳.	↑			4			با	1
Traffic Volume (veh/h)	0	65	20	40	340	0	30	0	11	7	30	37
Future Volume (Veh/h)	0	65	20	40	340	0	30	0	11	7	30	37
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	71	22	43	370	0	33	0	12	8	33	40
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					2							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	370			93			594	538	82	550	549	370
vC1, stage 1 conf vol							82	82		456	456	
vC2, stage 2 conf vol							512	456		94	93	
vCu, unblocked vol	370			93			594	538	82	550	549	370
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			93	100	99	99	94	94
cM capacity (veh/h)	1189			1501			454	532	978	544	529	676
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	93	43	370	45	41	40						
Volume Left	0	43	0	33	8	0						
Volume Right	22	0	0	12	0	40						
cSH	1700	1501	1700	529	532	676						
Volume to Capacity	0.05	0.03	0.22	0.08	0.08	0.06						
Queue Length 95th (ft)	0	2	0	7	6	5						
Control Delay (s)	0.0	7.5	0.0	12.4	12.3	10.7						
Lane LOS		А		В	В	В						
Approach Delay (s)	0.0	0.8		12.4	11.5							
Approach LOS				В	В							
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilizat	ion		34.6%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

102: NB Richardson Hwy Off-Ramp & SB Richardson Hwy Year 2016 Traffi

Year 2016 Traffic Conditions AM Peak Hour

	۶	-	\mathbf{r}	4	←	•	1	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					†						††	
Traffic Volume (veh/h)	0	0	0	0	353	0	0	0	0	0	417	0
Future Volume (Veh/h)	0	0	0	0	353	0	0	0	0	0	417	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	384	0	0	0	0	0	453	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	645	453	226	226	453	0	453			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	645	453	226	226	453	0	453			0		
tC, single (s)	7.5	6.5	6.9	7.5	*4.1	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	44	100	100			100		
cM capacity (veh/h)	197	501	776	709	681	1084	1104			1622		
Direction, Lane #	WB 1	SB 1	SB 2									
Volume Total	384	226	226									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	681	1700	1700									
Volume to Capacity	0.56	0.13	0.13									
Queue Length 95th (ft)	88	0	0									
Control Delay (s)	16.9	0.0	0.0									
Lane LOS	С											
Approach Delay (s)	16.9	0.0										
Approach LOS	С											
Intersection Summary												
Average Delay			7.8									
Intersection Capacity Utilizat	ion		36.8%	IC	U Level o	of Service			А			
Analysis Period (min)			15									
* User Entered Value												

201: Lakeview Dr & Old Richardson Hwy

Richardson Hwy MP 359 Grade Separated Facility Existing Year 2016 Traffic Conditions PM Peak Hour

	٨	-	•	*	+	×	1	t	۲	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢Î		۲	†			4			با	7
Traffic Volume (veh/h)	0	340	30	20	130	0	10	0	26	6	26	32
Future Volume (Veh/h)	0	340	30	20	130	0	10	0	26	6	26	32
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	370	33	22	141	0	11	0	28	7	28	35
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					2							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	141			403			620	572	386	600	588	141
vC1, stage 1 conf vol							386	386		185	185	
vC2, stage 2 conf vol							234	185		414	403	
vCu, unblocked vol	141			403			620	572	386	600	588	141
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			98			98	100	96	99	95	96
cM capacity (veh/h)	1442			1156			550	561	661	534	540	907
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	403	22	141	39	35	35						
Volume Left	0	22	0	11	7	0						
Volume Right	33	0	0	28	0	35						
cSH	1700	1156	1700	626	539	907						
Volume to Capacity	0.24	0.02	0.08	0.06	0.06	0.04						
Queue Length 95th (ft)	0	1	0	5	5	3						
Control Delay (s)	0.0	8.2	0.0	11.1	12.1	9.1						
Lane LOS		A		В	В	A						
Approach Delay (s)	0.0	1.1		11.1	10.6							
Approach LOS				В	В							
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utiliza	ation		35.2%	10	CU Level o	of Service			А			
Analysis Period (min)			15									

Richardson Hwy MP 359 Grade Separated Facility

202: NB Richardson Hwy Off-Ramp & SB Richardson Hwy Existing Year 2016 Traffic Conditions PM Peak Hour

	٢	→	٦¥	۶.	+	*	` +	X	4	*	×	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations					†			<u>††</u>				
Traffic Volume (veh/h)	0	0	0	0	144	0	0	1594	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	144	0	0	1594	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	157	0	0	1733	0	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1812	1733	866	866	1733	0	0			1733		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1812	1733	866	866	1733	0	0			1733		
tC, single (s)	7.5	6.5	6.9	7.5	*4.1	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	44	100	100			100		
cM capacity (veh/h)	27	87	296	247	281	1084	1622			360		
Direction, Lane #	WB 1	SE 1	SE 2									
Volume Total	157	866	866									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	281	1700	1700									
Volume to Capacity	0.56	0.51	0.51									
Queue Length 95th (ft)	79	0	0									
Control Delay (s)	32.8	0.0	0.0									
Lane LOS	D											
Approach Delay (s)	32.8	0.0										
Approach LOS	D											
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization	tion		58.3%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
* User Entered Value												

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: AM Peak Freeway/Dir of Travel: SB Richardson Hwy Junction: Lakeview Drive Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 Free-flow speed on freeway mph Volume on freeway 491 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp mph 35.0 Volume on ramp 74 vph Length of first accel/decel lane 250 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp 74 491 Volume, V (vph) vph 0.94 Peak-hour factor, PHF 0.94 Peak 15-min volume, v15 131 20 v Trucks and buses 7 7 % 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade ~ % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp		.00	pcph
Estimation	of V12 Diverge A	reas	
L = (E EQ	quation 13-12 or	13-13)	
P = 1.000 Us FD	ing Equation 0		
v = v + (v - v) 12 R F R	—	/h	
Capac	ity Checks		
v = v 541	Maximum 4600	LOS F? No	
Fi F v = v - v 460	4600	No	
FOFR v 81 R	2000	No	
	(Equation 1	3-14 or 13-17)	
Is v or v > 2700 pc/h? 3 av34	No		
Is v or v > 1.5 v /2 3 av34 12	No		
If yes, $v = 541$ 12A	(Equation 13-1	5, 13-16, 13-18, or 1	3-19)
	Diverge Influenc		
v 541		Violation? No	
12 Level of Service De	termination (if	not F)	
Density, $D = 4.252 + 0$		L = 6.7 pc/	mi/ln
R Level of service for ramp-freeway ju	12 nction areas of	D influence A	
Speed E	stimation		
Intermediate speed variable,	D = 0. S	435	
Space mean speed in ramp influence as		.2 mph	
Space mean speed in outer lanes,		/A mph	
Space mean speed for all vehicles,	S = 52	.2 mph	

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: PM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Lakeview Drive Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 1658 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp mph 35.0 Volume on ramp 64 vph Length of first accel/decel lane 250 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp 64 Volume, V (vph) 1658 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 441 17 v 7 Trucks and buses 7 % 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade ~ % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment Driver population factor Flow rate, vp			0.966 1.00 70		pcph
	Estimation o	f V12 Diverge	e Areas		
L = EQ	(Eq	uation 13-12	or 13-1	3)	
	1.000 Usi:	ng Equation	0		
	+ (v - v) 1 R F R		pc/h		
	Capaci	ty Checks			
v = v Fi F	Actual 1826	Maximum 4600		LOS F? No	
v = v - v FO F R	1756	4600		No	
v R	70	2000		No	
v or v	0 pc/h	(Equation	13-14	or 13-17)	
3 av34 Is v or v > 2700 3 av34	pc/h?	No			
$\begin{array}{cccc} & 3 & av34 \\ & \text{Is } v & \text{or } v & > 1.5 \\ & 3 & av34 \\ \end{array}$		No			
If yes, v = 1826 12A	12	(Equation 13	8-15, 13	-16, 13-18,	or 13-19)
	ow Entering D				
v 182	tual M. 26 4			Violation? No	
12 Level o:	f Service Det	ermination (i	f not F)	
Density, D	= 4.252 + 0.			= 17.7	pc/mi/ln
I Level of service for ram	R p-freeway jun	12 ction areas c	D of influ	ence B	
	Speed Es	timation			
Intermediate speed varial	ole,		0.434		
Space mean speed in ramp	influence ar		52.2	mph	
Space mean speed in outer	r lanes,		N/A	mph	
Space mean speed for all	vehicles,	0 S =	52.2	mph	

Phone: Fax: E-mail: _____Merge Analysis_____ JGM Analyst: Kittelson & Associates Agency/Co.: Agency/col.ArtecersonDate performed:3/1/2017Analysis time period:AM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Merge Number of lanes in freeway 2 60.0 Free-flow speed on freeway mph Volume on freeway 417 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 35.0 mph Volume on ramp 86 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent Ramp vph Position of adjacent Ramp Type of adjacent Ramp ft Distance to adjacent Ramp _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp 86 Volume, V (vph) 417 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 111 23 v Trucks and buses 0 0 Ŷ Recreational vehicles 0 0 % Level Terrain type: Level Grade ~ % % Length mi mi mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, fHV1.0001.000Driver population factor, fP1.001.00Flow rate, vp44491	pcph
Estimation of V12 Merge Areas	
L = (Equation 13-6 or 13-7) EQ P = 1.000 Using Equation 0 FM	
v = v (P) = 444 pc/h 12 F FM	
Capacity Checks	
Actual Maximum LOS F? V 535 4600 No FO	
v or v 0 pc/h (Equation 13-14 or 13-17)	
3 av34 Is v or v > 2700 pc/h? No	
3 av34 Is v or v > 1.5 v /2 No	
3 av34 12 If yes, v = 444 (Equation 13-15, 13-16, 13-18, or 1 12A	3-19)
Flow Entering Merge Influence Area Actual Max Desirable Violation? v 535 4600 No R12 Level of Service Determination (if not F)	
Density, D = $5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 4.9$ pc R R 12 A Level of service for ramp-freeway junction areas of influence A	/mi/ln
Speed Estimation	
Intermediate speed variable, M = 0.275 S	
Space mean speed in ramp influence area, S = 55.0 mph	
Space mean speed in outer lanes, $R = N/A$ mph	
0 Space mean speed for all vehicles, S = 55.0 mph	

Phone: Fax: E-mail: _____Merge Analysis_____ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: PM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Merge Number of lanes in freeway 2 60.0 1594 Free-flow speed on freeway mph Volume on freeway vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 35.0 mph Volume on ramp 360 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent Ramp vph Position of adjacent Ramp Type of adjacent Ramp ft Distance to adjacent Ramp _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 1594 360 Volume, V (vph) vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 424 96 v Trucks and buses 0 0 Ŷ Recreational vehicles 0 0 % Level Terrain type: Level Grade 00 % % Length mi mi mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, fHV Driver population factor, fP Flow rate, vp		1.00	pcph
Estimati	on of V12 Merge	Areas	
EQ	(Equation 13-6 Using Equation 1696 pc/h		
Ca	pacity Checks		
	Maximum 4600		??
v or v 0 p	oc/h (Equatio	on 13-14 or 13	3-17)
3 av34 Is v or v > 2700 pc/h?	No		
3 av34 Is v or v > 1.5 v /2 3 av34 12	No		
If yes, v = 1696 12A	(Equation 1	3-15, 13-16,	13-18, or 13-19)
		e Viol No	ation?
Density, D = 5.475 + 0.00734 v + R R Level of service for ramp-freeway	12	A	_
Spee	d Estimation		
Intermediate speed variable,	M = S	= 0.300	
Space mean speed in ramp influenc	e area, S =	54.6 mph	
Space mean speed in outer lanes,	R S =	N/A mph	
Space mean speed for all vehicles	0 s, S =	54.6 mph	

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: AM Peak 3/1/2017 Freeway/Dir of Travel: NB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 2525 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Left Side of freeway Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 353 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 353 Volume, V (vph) 2525 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 672 94 v 7 Trucks and buses 7 % 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade 8 % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjus Driver population f Flow rate, vp		0.966 1.00 2780	0.966 1.00 389		pcph
	Estimation	of V12 Diverge	e Areas		
	L = (H EQ	Equation 13-12	or 13-13)	
F	P = 1.000 Us FD	sing Equation	0		
v	v = v + (v - v) $12 R F R$		pc/h		
	Capac	city Checks			
v = v Fi F	Actual 2780	Maximum 4600		OS F? O	
v = v - v FO F R	2391	4600	N	ō	
v R	389	2000	N	o	
v or v	0 pc/h	n (Equation	n 13-14 o	r 13-17)	
3 av34 Is v or v > 3 av34	> 2700 pc/h?	No			
Is v or v > 3 av34		No			
If yes, v = 2780 12A		(Equation 13	8-15, 13-	16, 13-18,	or 13-19)
		Diverge Influe			
v		Max Desirable 4400		Violation? No	
12 Le	evel of Service De	etermination (i	f not F)		
Density,	D = 4.252 + 0).0086 v - 0.0	009 L	= 21.4	pc/mi/ln
Level of service fo	R or ramp-freeway ju	12 Inction areas c	D of influe	nce C	
	Speed I	Istimation			
Intermediate speed	variable,		0.463		
Space mean speed in	n ramp influence a		51.7	mph	
Space mean speed in	n outer lanes,		N/A	mph	
Space mean speed fo	or all vehicles,	0 S =	51.7	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ Analyst: JGM Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: PM Peak 3/1/2017 Freeway/Dir of Travel: NB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 1280 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Side of freeway Left Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 144 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 144 Volume, V (vph) 1280 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 340 38 v Trucks and buses 7 7 Ŷ 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade 8 % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjus Driver population f Flow rate, vp			0.966 1.00 159	pcph
	Estimation	of V12 Diverge	Areas	
	_ = (F EQ	Equation 13-12	or 13-13)	
P	P = 1.000 Us FD	sing Equation	0	
	v = v + (v - v) $12 R F R$		pc/h	
	Capac	city Checks		
v = v Fi F	Actual 1409	Maximum 4600	LO No	S F?
v = v - v FO F R	1250	4600	No	
V	159	2000	No	
R V or V	0 pc/h	n (Equation	13-14 or	13-17)
3 av34 Is v or v >	• 2700 pc/h?	No		
3 av34 Is v or v >		No		
3 av34 If yes, v = 1409 12A		(Equation 13	-15, 13-1	6, 13-18, or 13-19)
		Diverge Influe		
V		Max Desirable 4400	V N	
12 Le	evel of Service De	etermination (i:	f not F)_	
Density,	D = 4.252 + 0	0.0086 v - 0.0	09 L =	9.6 pc/mi/ln
Level of service fo	R or ramp-freeway ju	12 Inction areas o	D f influen	ce A
	Speed B	Istimation		
Intermediate speed	variable,		0.442	
Space mean speed in	n ramp influence a		52.0 m	ph
Space mean speed in	n outer lanes,		N/A m	ph
Space mean speed fo	or all vehicles,	0 S = !	52.0 m	ph

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: AM Peak Freeway/Direction: NB Richardson Highway From/To: North Pole/Fairbanks Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 2525 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 672 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 1390 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1390 pc/h/ln Free-flow speed, FFS 60.0 mi/h 60.0 Average passenger-car speed, S mi/h Number of lanes, N 2 23.2 Density, D pc/mi/ln Level of service, LOS С

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: NB Richardson Highway From/To: North Pole/Fairbanks Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 1280 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 340 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 705 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 705 pc/h/ln Free-flow speed, FFS 60.0 mi/h 60.0 Average passenger-car speed, S mi/h Number of lanes, N 2 Density, D 11.8 pc/mi/ln Level of service, LOS B

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period:3/2/201/Amalysis Time Period:AM PeakFreeway/Direction:SB Richardson HighwayFrom/To:-From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 503 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 134 v Trucks and buses 7 8 Recreational vehicles 0 % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 277 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 277 pc/h/ln Free-flow speed, FFS 60.0 mi/h 60.0 Average passenger-car speed, S mi/h Number of lanes, N 2 4.6 Density, D pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: SB Richardson Highway From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 1954 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 520 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 1076 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1076 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 17.9 Density, D pc/mi/ln Level of service, LOS B

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period:3/2/201/Amalysis Time Period:AM PeakFreeway/Direction:SB Richardson HighwayFrom/To:-From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 503 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 134 v Trucks and buses 7 8 Recreational vehicles 0 % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 277 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 277 pc/h/ln Free-flow speed, FFS 60.0 mi/h 60.0 Average passenger-car speed, S mi/h Number of lanes, N 2 4.6 Density, D pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: SB Richardson Highway From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2016 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 1954 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 520 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 1076 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1076 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 17.9 Density, D pc/mi/ln Level of service, LOS B

Attachment B DOT&PF Crash Report Summary (2008 -2012)

81							ACCSEVERITY	ΤΟΤΙΝΙ	MAJINJ	MININJ	TOTFATAL	EVETYPE	EVELOC	WEATHER	SURFACECOND	LIGHT
		190705	0.467	2010	RICHARDSON HWY	CROSSOVER	PROPERTY DAMAGE ONLY	0	0	0	0	SIGN	ROADWAY	CLOUDY	ICE	DAYLIGHT
	81631	190700	0.127	2008	OLD RICHARDSON HWY	LAKEVIEW DR	PROPERTY DAMAGE ONLY	0	0	0	0	SIGN	MEDIAN	CLOUDY	ICE	TWILIGHT
811	11805	190700	0.127	2008	OLD RICH@ SOUTH FAIRBANKS	LAKEVIEW DR	NON- INCAPACITATING/PO SSIBLE INJURY	2	0	2	0	VEH - ANGLE	ROADWAY	RAIN	WET	DAYLIGHT
816 Old Richardson	16943	190700	0.127	2008	OLD RICH@SOUTH FAIRBANKS	LAKEVIEW DR	NON- INCAPACITATING/PO SSIBLE INJURY	2	0	2	0	VEH - ANGLE	ROADWAY	CLEAR	DRY	DAYLIGHT
Hwy/Lakeview Dr 822	22722	190700	0.127	2008	OLD RICHARDSON HWY	LAKEVIEW DR	PROPERTY DAMAGE ONLY	0	0	0	0	RAN OFF ROAD	ROADWAY	CLEAR	ICE	DAYLIGHT
		190700	0.127	2010	OLD RICHARDSON HWY	LAKEVIEW DR	PROPERTY DAMAGE ONLY	0	0	0	0	RAN OFF ROAD	ROADWAY	SNOW	ICE	DAYLIGHT
12/	24640	190700	0.127	2012	OLD RICHARDSON HIGHWAY	LAKEVIEW DRIVE	PROPERTY DAMAGE ONLY	0	0	0	0	VEH - ANGLE	ROADWAY	CLEAR	DRY	DAYLIGHT
12:	23209	190700	0.127	2012	OLD RICHARDSON HIGHWAY	LAKEVIEW DRIVE	PROPERTY DAMAGE ONLY	0	0	0	0	VEH - ANGLE	ROADWAY	CLOUDY	WATER	DAYLIGHT
800	001397	190000	362.321	2008	NB RICHARDSON HWY	R R TRACKS_359 MI	PROPERTY DAMAGE	0	0	0	0	SIGN	ROADWAY	CLEAR	ICE	DAYLIGHT
		190000	362.321	2008	RICHARDSON HWY	MP 359	PROPERTY DAMAGE ONLY	0	0	0	0	DITCH	UNKNOWN	SNOW	SNOW	DARK - ROADWAY NOT LIGHTED
							NON- INCAPACITATING/PO									
92'	20529	190000	362.326	2009	RICHARDSON HWY	MILE 359	SSIBLE INJURY	1	0	1	0	VEH - REAR END	ROADWAY	CLEAR	DRY	DAYLIGHT
10	.02648	190000	362.326	2010	RICHARDSON HWY	359 MI	PROPERTY DAMAGE ONLY	0	0	0	0	OTHER FIXED OBJECT	ROADWAY	CLEAR	ICE	DAYLIGHT
	097943	190000	362.326	2010	RICHARDSON HWY	MILE 359	PROPERTY DAMAGE ONLY	0	0	0	0	MOOSE	ROADWAY	CLOUDY	DRY	DARK - ROADWAY NOT LIGHTED
							NON- INCAPACITATING/PO									
12/	24580	190000	362.326	2012	RICHARDSON HWY	359 MI	SSIBLE INJURY	1	0	1	0	VEH - REAR END	ROADWAY	CLOUDY	DRY	DAYLIGHT
101	015740	190000	362.366	2010	RICHARDSON HIGHWAY	MP 359	PROPERTY DAMAGE ONLY	0	0	0	0	DITCH	ROADWAY	CLOUDY	ICE	DARK - ROADWAY NOT LIGHTED
							PROPERTY DAMAGE							SLEET, HAIL (FREEZING		DARK - LIGHTED
		190000	362.401	2010	OLD RICHARDSON	AIRPORT WAY	ONLY	0	0	0	0	RAN OFF ROAD	ROADSIDE	RAIN)	ICE	ROADWAY
Richardson Mainline	85120	190000	362.504	2008	RICHARDSON HWY MP 359.2	AK RAILROAD CROSSING	PROPERTY DAMAGE ONLY	0	0	0	0	RAN OFF ROAD	ROADWAY	CLEAR	ICE	DARK - ROADWAY NOT LIGHTED
92	23986	190000	362.504	2009	RICHARDSON HWY	ALASKA RAILROAD	NON- INCAPACITATING/PO SSIBLE INJURY	1	0	1	0	VEH - REAR END	ROADWAY	CLEAR	DRY	DARK - ROADWAY NOT LIGHTED
101	012132	190000	362.564	2010	RICHARDSON HWY SB	RAILROAD TRACKS	PROPERTY DAMAGE ONLY	0	0	0	0	SIGN	ROADWAY	CLEAR	DRY	DAYLIGHT
82	22052	190000	362.711	2008	RICHARDSON HWY	WAINWRIGHT 3 MI GATE	PROPERTY DAMAGE ONLY	0	0	0	0	RAN OFF ROAD	ROADWAY	CLEAR	ICE	DARK - LIGHTED ROADWAY
		190000	362.754	2010	RICHARDSON HWY	3 MI RR XING	PROPERTY DAMAGE ONLY	0	0	0	0	RAN OFF ROAD	ROADWAY	CLOUDY	ICE	DAYLIGHT
							PROPERTY DAMAGE	-		-						
820	20389	190000	362.779	2008	RICHARDSON HWY	OLD RICHARDSON	ONLY NON-	0	0	0	0	DITCH	ROADWAY	SNOW	SNOW	DAYLIGHT
92	20336	190000	362.899	2009	N/B RICHARDSON HWY	OLD RICHARDSON HWY	INCAPACITATING/PO SSIBLE INJURY	1	0	1	0	MOOSE	ROADWAY	SNOW	WET	DAYLIGHT
		190000	362.976	2009	RICHARDSON HWY	EXIT 15 MITCHELL EXPRESSWAY	PROPERTY DAMAGE ONLY	0	0	0	0	VEH - ANGLE	ROADWAY	CLEAR	DRY	DAYLIGHT

Attachment C Future Year 2040 No-Build Traffic Conditions Worksheets

Richardson Highway MP359 Grade Separated Facility

101: Lakeview Dr & Old Richardson Hwy

Year 2040 No-Build Traffic Conditions AM Peak Hour

	٦	-	\mathbf{r}	4	-	×.	1	t	1	\	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦	1			4			ų	1
Traffic Volume (veh/h)	0	88	27	54	462	0	41	0	15	10	40	50
Future Volume (Veh/h)	0	88	27	54	462	0	41	0	15	10	40	50
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	96	29	59	502	0	45	0	16	11	43	54
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					2							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	502			125			806	730	110	746	745	502
vC1, stage 1 conf vol							110	110		620	620	
vC2, stage 2 conf vol							696	620		126	125	
vCu, unblocked vol	502			125			806	730	110	746	745	502
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			96			86	100	98	97	90	91
cM capacity (veh/h)	1062			1462			331	443	943	437	440	569
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	125	59	502	61	54	54						
Volume Left	0	59	0	45	11	0						
Volume Right	29	0	0	16	0	54						
cSH	1700	1462	1700	398	439	569						
Volume to Capacity	0.07	0.04	0.30	0.15	0.12	0.09						
Queue Length 95th (ft)	0	3	0	13	10	8						
Control Delay (s)	0.0	7.6	0.0	15.7	14.3	12.0						
Lane LOS		А		С	В	В						
Approach Delay (s)	0.0	0.8		15.7	13.2							
Approach LOS				С	В							
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utilizati	ion		41.0%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

Richardson Highway MP359 Grade Separated Facility

102: NB Richardson Hwy Off-Ramp & SB Richardson Hwy Year 2040 No-Build Traffic Conditions AM Peak Hour

	٦	-	\mathbf{r}	4	←	•	1	Ť	1	6	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					†						<u>††</u>	
Traffic Volume (veh/h)	0	0	0	0	480	0	0	0	0	0	704	0
Future Volume (Veh/h)	0	0	0	0	480	0	0	0	0	0	704	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	522	0	0	0	0	0	765	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1026	765	382	382	765	0	765			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1026	765	382	382	765	0	765			0		
tC, single (s)	7.5	6.5	6.9	7.5	*4.1	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	6	100	100			100		
cM capacity (veh/h)	32	332	616	550	557	1084	844			1622		
Direction, Lane #	WB 1	SB 1	SB 2									
Volume Total	522	382	382									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	557	1700	1700									
Volume to Capacity	0.94	0.23	0.23									
Queue Length 95th (ft)	299	0	0									
Control Delay (s)	51.3	0.0	0.0									
Lane LOS	F	0.0	0.0									
Approach Delay (s)	51.3	0.0										
Approach LOS	F	0.0										
Intersection Summary												
Average Delay			20.8									
Intersection Capacity Utiliza	ation		51.4%	IC	CU Level o	of Service			А			
Analysis Period (min)			15						7.			
			10									
 * User Entered Value 												

Richardson Highway MP 359 Grade Separated Facility

201: Lakeview Dr & Old Richardson Hwy

Year 2040 No-Build Traffic Conditions PM Peak Hour

	٦	-	¥	4	+	×.	N	t	۲	1	ţ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	↑			4			با	1
Traffic Volume (veh/h)	0	462	41	27	177	0	14	0	35	9	35	43
Future Volume (Veh/h)	0	462	41	27	177	0	14	0	35	9	35	43
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	502	45	29	192	0	15	0	38	10	38	47
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			TWLTL							
Median storage veh)					2							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	192			547			840	774	524	812	797	192
vC1, stage 1 conf vol							524	524		250	250	
vC2, stage 2 conf vol							316	250		562	547	
vCu, unblocked vol	192			547			840	774	524	812	797	192
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			97	100	93	98	92	94
cM capacity (veh/h)	1381			1022			448	481	553	420	453	850
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	547	29	192	53	48	47						
Volume Left	0	29	0	15	10	0						
Volume Right	45	0	0	38	0	47						
cSH	1700	1022	1700	518	446	850						
Volume to Capacity	0.32	0.03	0.11	0.10	0.11	0.06						
Queue Length 95th (ft)	0	2	0	8	9	4						
Control Delay (s)	0.0	8.6	0.0	12.7	14.0	9.5						
Lane LOS		А		В	В	А						
Approach Delay (s)	0.0	1.1		12.7	11.8							
Approach LOS				В	В							
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utiliz	ation		43.1%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

Richardson Highway MP 359 Grade Separated Facility

202: NB Richardson Hwy Off-Ramp & SB Richardson Hwy Year 2040 No-Build Traffic Conditions PM Peak Hour

	الر	-	\mathbf{i}	4	+	×	•	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1						††	
Traffic Volume (veh/h)	0	0	0	0	196	0	0	0	0	0	2081	0
Future Volume (Veh/h)	0	0	0	0	196	0	0	0	0	0	2081	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	213	0	0	0	0	0	2262	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2368	2262	1131	1131	2262	0	2262			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2368	2262	1131	1131	2262	0	2262			0		
tC, single (s)	7.5	6.5	6.9	7.5	*4.1	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	100	100			100		
cM capacity (veh/h)	0	40	197	158	187	1084	223			1622		
Direction, Lane #	WB 1	SB 1	SB 2									
Volume Total	213	1131	1131									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	187	1700	1700									
Volume to Capacity	1.14	0.67	0.67									
Queue Length 95th (ft)	268	0	0									
Control Delay (s)	159.6	0.0	0.0									
Lane LOS	F											
Approach Delay (s)	159.6	0.0										
Approach LOS	F											
Intersection Summary												
Average Delay			13.7									
Intersection Capacity Utilization	ation		74.5%	IC	CU Level	of Service			D			
Analysis Period (min)			15									
* User Entered Value												

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: AM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Lakeview Drive Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 2 60.0 Free-flow speed on freeway mph Volume on freeway 804 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 100 vph Length of first accel/decel lane 250 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 804 100 Volume, V (vph) vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 214 27 v Trucks and buses 7 7 Ŷ 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade 8 % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, Driver population factor, Flow rate, vp		0.966 1.00 885	0.966 1.00 110		pcph
	Estimation of	V12 Diverge	e Areas_		
L = EQ	(Equa	ation 13-12	or 13-1	.3)	
	1.000 Using	g Equation	0		
	+ (v - v) P F R		pc/h		
	Capacit	y Checks			
v = v Fi F	Actual 885			LOS F? No	
v = v - v FO F R	775	4600		No	
v	110	2000		No	
R v or v	0 pc/h	(Equatior	n 13-14	or 13-17)	
3 av34 Is v or v > 2700 3 av34	pc/h?	No			
Is v or v > 1.5 v 3 av34		No			
3 av34 If yes, v = 885 12A		(Equation 13	3-15, 13	-16, 13-18,	or 13-19)
	w Entering Di				
	ual Ma: 44			Violation? No	
12 Level of	Service Dete:	rmination (i	if not F	')	
Density, D	= 4.252 + 0.0	086 v - 0.0)09 L	= 9.6	pc/mi/ln
R Level of service for ramp	-freeway junc	12 tion areas c	D of influ	lence A	
	Speed Est	imation			
Intermediate speed variab	le,	D = S	0.438		
Space mean speed in ramp	influence area	a, S =	52.1	mph	
Space mean speed in outer	lanes,		N/A	mph	
Space mean speed for all	vehicles,	0 S =	52.1	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: PM Peak 3/1/2017 Freeway/Dir of Travel: SB Richardson Highway Junction: Lakeview Drive Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 2081 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 87 vph Length of first accel/decel lane 250 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp 87 Volume, V (vph) 2081 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 553 23 v Trucks and buses 7 7 % 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade ~ % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, f Driver population factor, f Flow rate, vp	P 1.	.966 0. .00 1. 291 96		pcph
Es	timation of V	12 Diverge Ar	eas	
L = EQ	(Equat:	ion 13-12 or	13-13)	
	.000 Using H	Equation 0		
	· (v - v) P = F R FD	= 2291 pc/	h	
	Capacity (Checks		
v = v Fi F	Actual 2291	Maximum 4600	LOS F? No	
	2195	4600	No	
	96	2000	No	
	0 pc/h	(Equation 13	-14 or 13-17)	
Is v or v > 2700 pc 3 av34	2/h?	No		
Is v or v > 1.5 v 3 av34 12		No		
If yes, v = 2291 12A		quation 13-15	, 13-16, 13-18,	or 13-19)
	Entering Diver			
v 2291	1 Max I 4400	Desirable	Violation? No	
12 Level of S	ervice Determ	ination (if n	.ot F)	
Density, D =	4.252 + 0.0086		L = 21.7	pc/mi/ln
R Level of service for ramp-f	reeway junctio	12 on areas of i	D nfluence C	
	Speed Estima	ation		
Intermediate speed variable	÷,	D = 0.4 S	37	
Space mean speed in ramp in	fluence area,	S = 52. R	1 mph	
Space mean speed in outer l	anes,	S = N/0	A mph	
Space mean speed for all ve	hicles,	S = 52.	1 mph	

Phone: Fax: E-mail: _____Merge Analysis_____ Analyst: JGM Agency/Co.: Kittelson & Associates Agency/col.ArtecersonDate performed:3/1/2017Analysis time period:AM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Merge Number of lanes in freeway 2 2 55.0 Free-flow speed on freeway mph Volume on freeway 704 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 35.0 mph Volume on ramp 80 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft ____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes 227 Volume on adjacent Ramp vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1200 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 80 0.94 704 Volume, V (vph) 227 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 187 21 60 v 0 0 Trucks and buses 0 0 % 0 0 Recreational vehicles 2 Level Level Level Terrain type: 00 Grade 8 % mi Length mi mi Trucks and buses PCE, ET 1.5 1.5 1.5 1.2 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, Driver population factor, Flow rate, vp		1.000 1.00 749			pcph
I	Estimation of	V12 Merge A	Areas		
EQ	(Equa				
FM	1.000 Using	g Equation	0		
	(P) = 749 FM	pc/h			
	Capacity	/ Checks			
V FO	Actual 834			LOS F? No	
v or v	0 pc/h	(Equatior	n 13-14	or 13-17)	
3 av34 Is v or v > 2700 p	pc/h?	No			
3 av34 Is v or v > 1.5 v	/ 2	No			
3 av34 If yes, v = 749 12A		Equation 13	3-15, 13	-16, 13-18,	or 13-19)
Actu v 834 R12	low Entering M al Max 460 Service Deter	Desirable		Violation? No	
Density, D = $5.475 + 0.007$ R Level of service for ramp-	R	12	A		pc/mi/ln
	Speed Esti	mation			
Intermediate speed variab	le,	M = S	0.277		
Space mean speed in ramp :	influence area	a, S =	51.4	mph	
Space mean speed in outer	lanes,	R S =	N/A	mph	
Space mean speed for all v	vehicles,	0 S =	51.4	mph	

Phone: Fax: E-mail: _____Merge Analysis_____ Analyst: JGM Agency/Co.: Kittelson & Associates Date performed: 3/1/2017 Analysis time period: PM Peak Freeway/Dir of Travel: SB Richardson Highway Junction: Old Richardson Highway Analysis Year: DOT&PF 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Merge Number of lanes in freeway 2 55.0 2081 Free-flow speed on freeway mph Volume on freeway vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-flow speed on ramp 35.0 mph Volume on ramp 243 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes 1591 Volume on adjacent Ramp vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1200 ft _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 243 2081 Volume, V (vph) 1591 vph Peak-hour factor, PHF 0.94 0.94 0.94 Peak 15-min volume, v15 553 65 423 v 0 0 Trucks and buses % 0 0 0 0 Recreational vehicles 2 Level Level Level Terrain type: 00 Grade 8 % mi Length mi mi Trucks and buses PCE, ET 1.5 1.5 1.5 1.2 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment Driver population factor Flow rate, vp		1.000 1.00 2214		1.00	pcph
	_Estimation of	V12 Merge	Areas		
EQ P =	(Equ 1.000 Usin				
	(P) = 221 F FM	4 pc/h			
	Capacit	y Checks			
V FO	Actual 2473			LOS F? No	
v or v	0 pc/h	(Equatio	n 13-14	or 13-17)	
$\begin{array}{ccc} 3 & av34 \\ \text{Is } v \text{ or } v & > 2700 \\ \end{array}$	pc/h?	No			
3 av34 Is v or v > 1.5 v		No			
3 av34 If yes, v = 2214 12A		(Equation 1	3-15, 13	-16, 13-18,	or 13-19)
Act v 24 R12	Flow Entering S cual Ma 73 46 E Service Dete	x Desirable 00		Violation? No	
Density, D = 5.475 + 0.00 R Level of service for ramp	R	12	A		pc/mi/ln
	Speed Est	imation			
Intermediate speed varial	ole,	M = S	0.315		
Space mean speed in ramp	influence are		50.9	mph	
Space mean speed in outer	r lanes,	S =	N/A	mph	
Space mean speed for all	vehicles,	0 S =	50.9	mph	

Phone: Fax: E-mail: _____Diverge Analysis______ JGM Analyst: Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: AM Peak 3/1/2017 Freeway/Dir of Travel: NB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 2447 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Side of freeway Left Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 480 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp 2447 480 Volume, V (vph) vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 651 128 v 7 Trucks and buses 7 % 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade ~ % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, Driver population factor, Flow rate, vp	fP		0.966 1.00 529		pcph			
Estimation of V12 Diverge Areas								
L = EQ	(Equa	tion 13-12	or 13-1	3)				
	P = 1.000 Using Equation 0							
v = v + (v - v) P = 2694 pc/h 12 R F R FD								
Capacity Checks								
v = v Fi F	Actual 2694			LOS F? No				
v = v - v FO F R	2165	4600		No				
v	529	2000		No				
R v or v	0 pc/h	(Equation	13-14	or 13-17)				
3 av34 Is v or v > 2700 p 3 av34	c/h?	No						
Is v or v > 1.5 v		No						
3 av34 12 If yes, v = 2694 (Equation 13-15, 13-16, 13-18, or 13-19) 12A								
	Entering Div							
v 2694	al Max 440			Violation? No				
12 Level of Service Determination (if not F)								
Density, D = 4.252 + 0.0086 v - 0.009 L = 20.7 pc/mi/ln								
R 12 D Level of service for ramp-freeway junction areas of influence C								
Speed Estimation								
Intermediate speed variabl	е,	D = S	0.476					
Space mean speed in ramp i	nfluence area		51.4	mph				
Space mean speed in outer	lanes,		N/A	mph				
Space mean speed for all v	ehicles,	-	51.4	mph				

Phone: Fax: E-mail: _____Diverge Analysis______ Analyst: JGM Kittelson & Associates Agency/Co.: Date performed: 3/1/2017 Analysis time period: PM Peak 3/1/2017 Freeway/Dir of Travel: NB Richardson Highway Junction: Old Richardson Highway Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway 2 60.0 1552 Free-flow speed on freeway mph Volume on freeway vph _____Off Ramp Data_____ Left Side of freeway Number of lanes in ramp 1 Free-Flow speed on ramp 35.0 mph Volume on ramp 196 vph Length of first accel/decel lane 750 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp ft Distance to adjacent ramp _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp 196 Volume, V (vph) 1552 vph Peak-hour factor, PHF 0.94 0.94 Peak 15-min volume, v15 413 52 v 7 Trucks and buses 7 Ŷ 0 Recreational vehicles 0 % Level Level Terrain type: 0.00 % 0.00 Grade 8 % 0.00 mi 0.00 mi Length mi Trucks and buses PCE, ET 1.5 1.5 Recreational vehicle PCE, ER 1.2 1.2

Heavy vehicle adjustment, Driver population factor, Flow rate, vp	fP		0.966 1.00 216		pcph			
Estimation of V12 Diverge AreasEstimation								
L = EQ	(Equa	tion 13-12 c	or 13-1	3)				
P = FD								
v = v + (v - v) P = 1709 pc/h 12 R F R FD								
Capacity Checks								
v = v Fi F	Actual 1709			LOS F? No				
	1493	4600	:	No				
v R	216	2000		No				
v or v 3 av34	0 pc/h) pc/h (Equation 13-14						
Is v or v > 2700 p 3 av34	c/h?	No						
Is v or v > 1.5 v 3 av34 1		No						
If yes, v = 1709 (Equation 13-15, 13-16, 13-18, or 13-19) 12A								
	Entering Div							
v Actual v 1709		Max Desirable 4400		Violation? No				
12 Level of Service Determination (if not F)								
Density, D = 4.252 + 0.0086 v - 0.009 L = 12.2 pc/mi/ln								
R 12 D Level of service for ramp-freeway junction areas of influence B								
Speed Estimation								
Intermediate speed variabl	е,	D = (S	0.447					
Space mean speed in ramp i	nfluence area		51.9	mph				
Space mean speed in outer	lanes,		N/A	mph				
Space mean speed for all v	ehicles,	-	51.9	mph				

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: AM Peak Freeway/Direction: NB Richardson Highway From/To: North Pole/Fairbanks Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 2447 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 651 v Trucks and buses 7 8 Recreational vehicles 0 % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 1347 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1347 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 22.5 Density, D pc/mi/ln Level of service, LOS С

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: NB Richardson Highway From/To: North Pole/Fairbanks Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 1552 veh/h Peak-hour factor, PHF 0.94 Peak 15-min volume, v15 413 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 854 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 854 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 14.2 Density, D pc/mi/ln Level of service, LOS B

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: AM Peak Freeway/Direction: SB Richardson Highway From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 704 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 187 v Trucks and buses 7 8 Recreational vehicles 0 % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 388 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 388 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 6.5 Density, D pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: SB Richardson Highway From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 2081 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 553 v Trucks and buses 7 8 0 Recreational vehicles % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 Heavy vehicle adjustment, fHV 0.966 Driver population factor, fp 1.00 Flow rate, vp 1146 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1146 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 19.1 Density, D pc/mi/ln Level of service, LOS С

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period:3/2/201/Amalysis Time Period:AM PeakFreeway/Direction:SB Richardson HighwayFrom/To:-From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 784 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 209 v Trucks and buses 7 8 Recreational vehicles 0 % Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 0.966 Heavy vehicle adjustment, fHV Driver population factor, fp 1.00 Flow rate, vp 432 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 432 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 7.2 Density, D pc/mi/ln Level of service, LOS А

Phone: Fax: E-mail: _____Operational Analysis______ Analyst: JGM Agency or Company: Kittelson & Associates Date Performed: 3/2/2017 Analysis Time Period: PM Peak Freeway/Direction: SB Richardson Highway From/To: Fairbanks/North Pole Jurisdiction: DOT&PF Analysis Year: 2040 Description: Richardson Highway MP 359 Grade Separated Facility _____Flow Inputs and Adjustments_____ Volume, V 2324 veh/h 0.94 Peak-hour factor, PHF Peak 15-min volume, v15 618 v Trucks and buses 7 8 0 Recreational vehicles 응 Terrain type: Level % Grade _ Segment length mi Trucks and buses PCE, ET 1.5 Recreational vehicle PCE, ER 1.2 Heavy vehicle adjustment, fHV 0.966 Driver population factor, fp 1.00 Flow rate, vp 1279 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width ft Right-side lateral clearance ft Total ramp density, TRD ramps/mi Number of lanes, N 2 Free-flow speed: Measured FFS or BFFS 60.0 mi/h Lane width adjustment, fLW mi/h Lateral clearance adjustment, fLC mi/h TRD adjustment mi/h Free-flow speed, FFS 60.0 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1279 pc/h/ln Free-flow speed, FFS 60.0 mi/h Average passenger-car speed, S 60.0 mi/h Number of lanes, N 2 21.3 Density, D pc/mi/ln Level of service, LOS C

P 907.646.7995

TECHNICAL MEMORANDUM

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

Alternatives Assessment: Traffic Conditions and Safety Analysis

Technical Memorandum #2

March 8, 2019 Date: James Potts, PE; Jacobs To: Andrew Ooms, PE; Ly Nguyen; and Anthony Yi, PE From:

This memorandum builds on the June 2017 Technical Memorandum #1 (Reference #1) and provides an update to the no build alternative traffic operations and safety analysis for a future design year of 2045 and an assessment of the concept alternatives in the area of the Richardson Highway/Old Richardson Highway intersection at milepost 359. This memorandum includes the following:

KAI Project #: 19230

Federal/State Project #:

0A24033/Z607340000

- Volume development for the future (2045) no build and concept alternatives.
- Operational analysis for 2045 no build scenario on mainline segments of the Richardson • Highway and the Richardson Highway/Old Richardson intersections (northbound and southbound).
- Future operational and safety assessment of the project concept alternatives.

A further description of the project and existing conditions is contained in Technical Memorandum #1.

FUTURE NO BUILD CONDITIONS UPDATE

2045 No Build Volumes

Technical Memorandum #1 included forecast future traffic volumes from the Fairbanks Metropolitan Area Transportation System (FMATS) travel demand model for a year 2040 design year. Since that analysis, the FMATS model has been updated to a 2045 horizon year, incorporates projects from the 2045 Metropolitan Transportation Plan (MTP), and includes revised Eielson Air Force Base projections. Given the expected design year for this project, the future no build volumes were revised to accommodate the new 2045 horizon year and updated land use projections. The previous analysis used a 1.5% linear annual growth rate to grow existing intersection turning movement and ramp volumes to 2040; this updated analysis uses a 1.2% annual growth rate through year 2045 based on the updated model growth in the area. The resulting 2045 volumes are substantially similar to the 2040 presented

in Technical Memorandum #1. The Richardson Highway mainline volumes were revised based on updated model projections.

2045 No Build Traffic Operations

Future no build traffic operations were evaluated to establish a vehicle operations baseline and to identify operations issues that may arise under future conditions. The future no build scenario maintains the existing lane configurations and traffic control devices in the study area while including planned roadway projects and increasing the traffic volumes to match projected growth.

Figure 1 shows the projected volumes and operations for the study area intersections and the freeway and merge/diverge segment operations within the study area.

The addition of the background 1.2 percent annual growth rate provides some deterioration in the year 2045 traffic conditions. The left turn from northbound Richardson Highway onto Old Richardson Highway is forecast to experience LOS F during the AM and PM peak hours. The freeway and merge/diverge segments are forecast to perform acceptably with LOS C or better on all facilities. *Future no build traffic operations worksheets are included in Attachment A.*

FUTURE CONCEPT EVALUATION

The project team has developed and evaluated preliminary interchange concepts, as documented in the August 2018 Interchange Concept Development Memo, prepared by Jacobs (Reference #2). That memo recommended two concepts for further analysis:

- A flyover concept replaces the existing at-grade intersection between southbound Richardson Highway and westbound Old Richardson Highway with a bridge over the mainline and a northbound truck bypass lane. The initial phase would not have a connection to Fort Wainwright and the completed concept would serve the base with access to and from northbound Richardson Highway via a right-in/right-out connection to the bypass lane, which would act as a frontage road.
- A diamond interchange concept accommodates the northbound Richardson Highway intersection connection to westbound Old Richardson Highway via an undercrossing under the mainline in the initial phase. When access to Fort Wainwright is provided, the undercrossing will be converted into a diamond interchange form with full access from the Old Richardson Highway and both directions of the Richardson Highway.

Both concepts also raise the Richardson Highway over the railroad to eliminate the current at-grade crossing near milepost 359.

CM = CRITICAL MOVEMENT LOS = CRITICAL MOVEMENT LEVEL OF SERVICE Del = CRITICAL MOVEMENT CONTROL DELAY V/C = CRITICAL VOLUME-TO-CAPACITY RATIO (#) - STUDY INTERSECTIONS

KITTELSON & ASSOCIATES

- STOP SIGN

Year 2045 No Build Intersection Lane Configurations, Freeway Segment Analysis, AM and PM Peak Hours Traffic Conditions

Figure

1

NB RICHARDSON HWY OFF-RAMP / SB RICHARDSON HWY MAINLINE

Future Concept Volumes Development

Kittelson developed analysis volumes for the initial and completed (with base access) phases of both the flyover and diamond interchange concept configurations.

Initial Phase Volume Development

The initial phase of both concepts provides grade separation of the northbound Richardson Highway to the westbound Old Richardson Highway connection over or under the southbound Richardson Highway. As documented in Technical Memorandum #1, average westbound vehicle delay at this location is over 30 seconds during the existing PM peak hour. However, traffic diversion due to this delay is expected to be minimal as the alternative route to this movement via Lathrop Street includes out-of-direction travel. Therefore, as neither concept provides a new connection that is expected to shift traffic volumes in the study area in their initial phase, the 2045 No Build volumes were used to analyze the initial phase of each concept.

Completed Phase Volume Development

Kittelson ran the 2045 FMATS MTP model with the proposed Fort Wainwright access alternatives to develop future volumes with the base connections. Kittelson developed and ran model runs for the flyover concept with right-in/right-out access from the Richardson Highway and the diamond concept with full access. Though calibrated to the Fairbanks network, the model can't fully capture the limits imposed by gate hours, specialized land uses, and restricted access, so Kittelson compared the model forecast against the existing base access counts to validate the output. Table 1 shows the existing and forecast daily traffic volumes at the Fort Wainwright gates. The total base access volumes differ across the 2045 model scenarios due to variability inherent in the travel demand model runs.

	2017	2017 Counts		lo Build	2045 Right-	n/Right-Out	2045 Full Access		
Gate	Volumes	Percentage	Volumes	Percentage	Volumes	Percentage	Volumes	Percentage	
Trainor Gate	5,130	25%	3,530	16%	3,852	18%	3,751	17%	
Gaffney Gate	12,678	61%	13,005	57%	9,847	46%	9,739	45%	
Badger Gate	3,000	14%	6,110	27%	5,390	25%	5,494	25%	
Proposed MP 359 Gate	0	0%	0	0%	2,203	10%	2,565	12%	
Total	20,808	100%	22,645	100%	21,292	100%	21,549	100%	

The model forecasts approximately 2,500 daily trips through the new gate, which is 10-12% of total base trips. The model forecasts for the right-in/right-out and full access configurations vary by only two percent.

Intersection turning movement and ramp volumes were developed for each concept by adding the peak hour base-access traffic flows from the model to the updated no build volumes for existing movements.

The proposed lane configurations and peak hour traffic volumes are shown in Figures 2 through 7.

- STOP SIGN
 - CONCEPT LINE WORK PROVIDED BY JACOBS

KITTELSON & ASSOCIATES Year 2045 Flyover Interchange Concept Without Base Access, Intersection Lane Configurations, Freeway Segment Analysis, AM and PM Peak Hours Traffic Conditions

Figure 2

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

(#) - STUDY INTERSECTIONS - STOP SIGN - CONCEPT LINE WORK PROVIDED BY JACOBS 3

AM and PM Peak Hours Traffic Conditions

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

March 2019

LOS = LEVEL OF SERVICE

CONCEPT LINE WORK PROVIDED BY JACOBS

* Operations results for frontage road merge/diverge cannot be calculated by HCM methods.

> **KITTELSON** & ASSOCIATES

Year 2045 Flyover Interchange Concept With Base Access AM and PM Peak Hours Freeway Segment Analysis

Figure 4

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

 $\begin{array}{l} CM = CRITICAL MOVEMENT\\ LOS = CRITICAL MOVEMENT LEVEL OF SERVICE\\ Del = CRITICAL MOVEMENT CONTROL DELAY\\ V/C = CRITICAL VOLUME-TO-CAPACITY RATIO\\ (\begin{array}{c} \end{tabular} \end{array}) + STUDY INTERSECTIONS \end{array}$

& ASSOCIATES

STUDY INTERSECTIONS
 STOP SIGN

CONCEPT LINE WORK PROVIDED BY JACOBS

Year 2045 Diamond Interchange Concept Without Base Access, Intersection Lane Configurations, Freeway Segment Analysis, AM and PM Peak Hours Traffic Conditions

Figure 5

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

March 2019

AM and PM Peak Hours Traffic Conditions

- STOP SIGN

- CONCEPT LINE WORK PROVIDED BY JACOBS

Richardson Highway MP 359 Interchange and Railroad Grade Separated Facility

AM and PM Peak Hours Freeway Segment Analysis

ALTERNATIVE EVALUATION

Traffic Operations

Flyover Concept

The initial phase of the flyover concept is expected to result in 2045 volumes similar to the no build condition. Figure 2 illustrates the proposed initial roadway configuration (without base access) and the intersection and ramp peak hour traffic operations. With the flyover eliminating the northbound-to-westbound intersection and its forecast delay, all intersections and ramps are forecast to operate at LOS C or better in 2045.

The completed concept (with base access) includes a right-in/right-out connection to the northbound Richardson Highway via the overheight truck bypass lane which would then serve as a frontage road, as shown in Figure 3. This connection will be provided via a free-flowing merge/diverge intersection shown in Exhibit 1, which cannot be directly assessed via Highway Capacity Manual methods. However, given the minimal forecast through volumes, the base access movements are expected to experience very little delay. Figure 4 demonstrates that all ramp and mainline movements are forecast to operate at LOS C or better during the AM and PM peak hours.

Exhibit 1 Flyover Completed Concept Base Access Intersection (Source: Jacobs)

Diamond Concept

As with the flyover, the initial phase of the diamond concept is forecast to have similar volumes to the 2045 no build scenario. Figure 5 (without base access) shows the proposed roadway configuration and intersection and ramp operations. With the heavy northbound-to-westbound movement served via an undercrossing, all intersections and ramps are forecast to operate at LOS C or better during the 2045 AM and PM peak hours.

The completed concept includes a full access diamond interchange, as shown in Figure 6 (with base access), which creates two interchange ramp terminal intersections. Kittelson investigated three traffic control configurations:

• **Two-way stop control** on the ramp approaches is forecast to operate at LOS C in 2045. The heavy northbound-to-westbound movement is subject to stop control at the northbound ramp

terminal intersection, but due to low conflicting volumes is not forecast to result in delay greater than LOS C.

- **Single-lane roundabouts** were considered to increase the capacity of the interchange ramp terminals over the stop-controlled alternative. However, roundabouts would have higher construction and maintenance costs than two-way stop control.
- **Traffic signal control** was considered though the ramp terminal intersections do not meet traffic signal volume warrants in 2045.

Given the uncertainty of timing and appeal of the base access configurations, Kittelson ran a sensitivity analysis on the volume in and out of the base to test the suitability of each traffic control alternative while the forecast no build volumes are kept constant. The two-way stop control configuration would support a doubling of the forecast base access volumes at LOS C. This base access volume would represent 25% of total base ins and outs.

The project team selected the two-way stop control configuration as it provides sufficient capacity in 2045. The lane configurations and resulting intersection and ramp operations are shown in Figure 6. All movements are forecast to operate at LOS C or better during the 2045 AM and PM peak hours. Figure 7 demonstrates that all ramp and mainline movements under the diamond interchange concept are forecast to operate at LOS C or better during the AM and PM peak hours. *Future no build traffic operations worksheets are included in Attachment B.*

Railroad Crossing Operations

All concepts plan to grade separate the existing milepost 359 railroad crossing. This configuration would remove all vehicle delay associated with the two off-peak train crossings per day as well as the required stopping at the tracks for buses and hazardous materials trucks.

Safety Assessment

Initial Phase Concepts

All proposed concepts eliminate the crash risk associated with:

- Stopping and weaving conflicts at the at-grade railroad crossing.
- Driver expectation challenges associated with the northbound left exit to the Old Richardson Highway.
- High speed right-angle and rear-end crashes at the at-grade intersection between southbound Richardson Highway and westbound Old Richardson Highway. While Technical Memorandum #1 documents no right-angle crashes were reported at this location between 2008 and 2012, this crash risk is likely to grow with the increasing traffic volumes and delay forecast at this intersection.

As a result, the initial phases of the flyover and diamond concepts are expected to the have similar future safety performance.

Completed Phase Concepts

The predicted future safety performance of the completed concepts is expected to differentiate the concepts based on the number of conflicts reflecting the degree of access each concept provides. The completed flyover concept provides only right-in/right-out base access via a free-flowing frontage road intersection. The heavy northbound-to-westbound movement is provided via flyover.

The completed diamond concept is predicted to result in more crashes than the flyover concept as a result of providing full access between the base and the Richardson and Old Richardson Highways. These additional connections lead to more conflict points than the flyover, including stop-control for the northbound-to-westbound movement.

Pedestrian and Bicycle Assessment

Initial Phase Concepts

The initial phases of both concepts facilitate the proposed Richardson Highway MP 357-362 Bicycle/Pedestrian Path running on the north side of the project. Neither concept provides a connection between that path to the Old Richardson Highway, though the initial phase of the diamond concept could more easily accommodate some future connection.

Completed Phase Concepts

Both completed concept configurations include a crossing where the bicycle/pedestrian path crosses the base access road at an intersection. Appropriate signing, striping, and traffic control at this crossing will be developed as the design progresses. The diamond concept could likely accommodate a future pedestrian and bicycle connection to Old Richardson Highway, but the grades associated with the flyover may preclude such a connection in that concept.

Vehicle Access and Circulation

Initial Phase Concepts

Both initial phase concepts provide access and circulation that are functionally similar to the existing configuration. The ramps on and off the Richardson Highway to the south combined with the existing eastbound Richardson Highway offramp at Lakeview Drive provide three of the four movements at the interchange. The eastbound Old Richardson Highway to northbound Richardson Highway movement is

not accommodated, but due to the alignment of the highways this movement is effectively a U-turn and can be efficiently made via the Mitchell and Steese Expressway ramps from South Cushman Street.

The treatment of access points along Old Richardson Highway in the vicinity of the interchange will be established after alternative selection as the design moves forward.

Completed Phase Concepts

The degree of access and circulation differs between the two completed concepts. The completed flyover concept adds only the right-in/right-out access to Fort Wainwright and does not provide a connection between the base and southbound Richardson Highway.

The completed diamond concept does provide a direct connection from the Old Richardson Highway and the base and access to the Richardson Highway in all directions. The southbound Richardson Highway off-ramp is somewhat redundant to the upstream Lakeview Drive off ramp, but it does provide more direct access to the base from the north, though that volume is forecast to be small. As a result, this off-ramp at the Old Richardson Highway is optional and will be further investigated if the diamond concept is selected.

NEXT STEPS

This traffic and safety evaluation of the proposed concepts will be considered by the project team alongside other criteria, such as cost and right-of-way impacts, to determine a preferred alternative. Given that the initial phases of the two concepts are functionally similar, special consideration must be placed on the likelihood of an eventual base connection and the access needs of that connection. The preferred alternative and the selection process will be further documented in an Interchange Alternative Selection Report. The chosen interchange configuration's adherence to the Federal Highway Administration's two-point policy will be documented in an Interchange Justification Report.

REFERENCES

- 1. Kittelson & Associates, Inc. *Richardson Highway MP 359 Grade Separated Facility Technical Memorandum #1: Existing and Background Traffic Conditions and Safety Analysis.* June 2017.
- 2. Jacobs. *Richardson Highway MP 359 Grade Separated Facility: Interchange Concept Development Memo.* August 2018.

Attachment A 2045 No Build Traffic Conditions Worksheets

Year 2045 No-Build Traffic Conditions AM Peak Hour 1: Lakeview Dr & Old Richardson Hwy

	٦	-	$\mathbf{\hat{F}}$	4	+	•	•	t	۲	1	ţ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î,		۳	↑			4			4	7
Traffic Volume (veh/h)	0	88	27	54	458	0	40	0	15	9	40	50
Future Volume (Veh/h)	0	88	27	54	458	0	40	0	15	9	40	50
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	96	29	59	498	0	43	0	16	10	43	54
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	498			125			802	726	110	742	741	498
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	498			125			802	726	110	742	741	498
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	0.2		0.0	0.1
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			96			82	100	98	97	87	91
cM capacity (veh/h)	1066			1462			239	337	943	316	330	572
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2		•••	0.0	•••		•••=
Volume Total	125	59	498	59	53	<u>56 2</u> 54						
Volume Left	125	59	490	43	10	0						
	29			43 16		54						
Volume Right cSH	1700	0 1462	0 1700	300	0 327	54 572						
Volume to Capacity	0.07	0.04	0.29	0.20	0.16	0.09						_
Queue Length 95th (ft)	0	3	0	18	14	8						
Control Delay (s)	0.0	7.6	0.0	19.9	18.1	11.9						_
Lane LOS	0.0	A		C	C	В						
Approach Delay (s)	0.0	0.8		19.9	15.0							
Approach LOS				С	В							
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utilizat	ion		40.8%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	٦	→	\mathbf{F}	4	+	•	•	1	۲	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1						††	
Traffic Volume (veh/h)	0	0	0	0	476	0	0	0	0	0	739	0
Future Volume (Veh/h)	0	0	0	0	476	0	0	0	0	0	739	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	517	0	0	0	0	0	803	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1062	803	402	402	803	0	803			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1062	803	402	402	803	0	803			0		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	100	100			100		
cM capacity (veh/h)	0	315	598	533	315	1084	817			1622		
Direction, Lane #	WB 1	SB 1	SB 2									
Volume Total	517	402	402									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	315	1700	1700									
Volume to Capacity	1.64	0.24	0.24									
Queue Length 95th (ft)	785	0	0									
Control Delay (s)	330.9	0.0	0.0									
Lane LOS	F											
Approach Delay (s)	330.9	0.0										
Approach LOS	F											
Intersection Summary												
Average Delay			129.6									
Intersection Capacity Utiliza	ation		84.3%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									

Year 2045 No-Build Traffic Conditions PM Peak Hour 1: Lakeview Dr & Old Richardson Hwy

Synchro 10 Report HCM Unsignalized Intersection Capacity Analysis

	٦	-	¥	4	+	×.	1	Ť	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢Î		٦	↑			\$			ŧ	1
Traffic Volume (veh/h)	0	458	40	27	175	0	13	0	35	8	35	43
Future Volume (Veh/h)	0	458	40	27	175	0	13	0	35	8	35	43
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	498	43	29	190	0	14	0	38	9	38	47
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	190			541			834	768	520	806	789	190
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	190			541			834	768	520	806	789	190
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			94	100	93	97	88	94
cM capacity (veh/h)	1384			1028			241	323	556	274	314	852
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	541	29	190	52	47	47						
Volume Left	0	29	0	14	9	0						
Volume Right	43	0	0	38	0	47						
cSH	1700	1028	1700	412	305	852						
Volume to Capacity	0.32	0.03	0.11	0.13	0.15	0.06						
Queue Length 95th (ft)	0	2	0	11	13	4						
Control Delay (s)	0.0	8.6	0.0	15.0	18.9	9.5						
Lane LOS		А		С	С	А						
Approach Delay (s)	0.0	1.1		15.0	14.2							
Approach LOS				С	В							
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utilization	ation		42.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	٦	→	\mathbf{F}	4	←	•	1	t	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					•						††	
Traffic Volume (veh/h)	0	0	0	0	194	0	0	0	0	0	1881	0
Future Volume (Veh/h)	0	0	0	0	194	0	0	0	0	0	1881	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	211	0	0	0	0	0	2045	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2150	2045	1022	1022	2045	0	2045			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2150	2045	1022	1022	2045	0	2045			0		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	100	100			100		
cM capacity (veh/h)	0	55	233	190	55	1084	272			1622		
Direction, Lane #	WB 1	SB 1	SB 2									
Volume Total	211	1022	1022									
Volume Left	0	0	0									
Volume Right	0	0	0									
cSH	55	1700	1700									
Volume to Capacity	3.80	0.60	0.60									
Queue Length 95th (ft)	Err	0	0									
Control Delay (s)	Err	0.0	0.0									
Lane LOS	F											
Approach Delay (s)	Err	0.0										
Approach LOS	F											
Intersection Summary												
Average Delay			935.2									
Intersection Capacity Utilizat	tion		68.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т			
General Information			Site Information				
Analyst	LTN		Highway/Direction of Trave	SB Rich	ardson Highway		
Agency or Company	Kittelson & A	ssociates	From/To	East of L	East of Lakeview Dr Off-		
Date Performed	12/17/2018		Jurisdiction	Ramp DOT&PI	=		
Analysis Time Period	AM Peak		Analysis Year	2045 No			
Project Description Richa	rdson Highway	y MP 359 Grad	le Separated Facility				
✓ Oper.(LOS)			es.(N)	Plan	ning Data		
Flow Inputs							
Volume, V	739	veh/h	Peak-Hour Factor, PHF	0.94			
AADT		veh/day	%Trucks and Buses, P _T	7			
Peak-Hr Prop. of AADT, K			%RVs, P _R	0			
Peak-Hr Direction Prop, D			General Terrain:	Level			
DDHV = AADT x K x D		veh/h	Grade % Length	mi			
Colouloto Elow Adius	transta		Up/Down %				
Calculate Flow Adjus							
f _p	1.00		E _R	1.2			
Ε _Τ	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] <i>0.966</i>			
Speed Inputs			Calc Speed Adj and I	FS			
Lane Width		ft					
Rt-Side Lat. Clearance		ft	f _{LW}		mph		
Number of Lanes, N	2		f _{LC}		mph		
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph		
FFS (measured)	60.0	mph	-	60.0			
Base free-flow Speed,			FFS	60.0	mph		
BFFS		mph					
LOS and Performanc	e Measures	;	Design (N)				
			Design (N)				
Operational (LOS)	NUM		Design LOS				
v _p = (V or DDHV) / (PHF x	N X ^T HV 407	pc/h/ln	$v_p = (V \text{ or } DDHV) / (PHF x)$	N x f _{HV}			
x f _p)		·	x f _p)		pc/h/ln		
S	60.0	mph	S		mph		
D = v _p / S	6.8	pc/mi/ln	$D = v_p / S$		pc/mi/ln		
LOS	A		Required Number of Lanes	: N	P		
Glasson				, , , , , , , , , , , , , , , , , , , ,			
Glossary			Factor Location				
N - Number of lanes	S - Spee		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8		
V - Hourly volume	D - Densi	-	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9		
v _p - Flow rate		e-flow speed	f _n - Page 11-18		TRD - Page 11-1		
LOS - Level of service	BFFS - Ba	se free-flow	LOS, S, FFS, v _p - Exhibits	11-2,	5		
speed DDHV - Directional design	hour volume		11-3	,			
_					ed: 12/28/2018 0.10 A		

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:19 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Trave	SB Richa	ardson Highway
Agency or Company	Kittelson & A	ssociates	From/To		akeview Dr Off-
Date Performed	12/17/2018		Jurisdiction	Ramp DOT&PF	=
Analysis Time Period	PM Peak		Analysis Year	2045 No	
Project Description Richa	rdson Highwa	y MP 359 Grad	le Separated Facility		
✓ Oper.(LOS)			es.(N)	🗌 Plan	ning Data
Flow Inputs					
Volume, V	1881	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P_T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain:	Grade	
		veh/h	Grade 0.00% Lengt Up/Down %	n 0.00mi 0.00	
Calculate Flow Adjus	tmonts			0.00	
	1.00			1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and I	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	, mph
Base free-flow Speed,		mph		00.0	mpri
BFFS		-			
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x I)$	Nyf		Design LOS		
$x_p = (0.01 \text{ DBH}) / (1.11 \text{ X})$	1036 N	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		ponnin
		mph	S		mph
$D = v_p / S$	17.3	pc/mi/ln	D = v _p / S		pc/mi/ln
LOS	В		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	d			C = 1 11 11 4 4 0
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	44.40	f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ise free-flow	f _p - Page 11-18		TRD - Page 11-11
speed		-	LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		
Convright @ 2016 Iniversity of Florid					ed: 12/28/2018 0.10

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:19 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Trave	SB Rich	ardson Highwav
Agency or Company	Kittelson & A	ssociates	From/To	South of	Old Richardson
Date Performed	12/17/2018		Jurisdiction	Hwy DOT&PI	=
Analysis Time Period	AM Peak		Analysis Year	2045 No	
Project Description Richa	ardson Hlghwa	y MP 359 Inter	change Study		
Oper.(LOS)			es.(N)	Plan	ining Data
Flow Inputs					
Volume, V	855	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Ven/m	Up/Down %	1111	
Calculate Flow Adjus	tments		00,20111,0		
f _p	1.00		E _R	1.2	
E _T	1.5		r f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1		
Speed Inputs			Calc Speed Adj and		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f		mph
Number of Lanes, N	2		f _{LW}		mph
Total Ramp Density, TRD		ramps/mi	f _{LC} TRD Adjustment		-
FFS (measured)	60.0	mph	-		mph
Base free-flow Speed,			FFS	60.0	mph
BFFS		mph			
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x)$	N x fu		Design LOS		
x f _p)	471 HV	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		p0/11/11
D = v _p / S	7.8	pc/mi/ln	S		mph
LOS	A.0	permin	D = v _p / S		pc/mi/ln
200	7		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	d	E _R - Exhibits 11-10, 11-12		f _{I W} - Exhibit 11-8
V - Hourly volume	D - Dens	ity	$E_{\rm R} = E_{\rm X} + 100000000000000000000000000000000000$	11-13	f_{LC} - Exhibit 11-9
v _p - Flow rate	FFS - Free	e-flow speed	$f_{n} - Page 11-18$		TRD - Page 11-11
LOS - Level of service	BFFS - Ba	se free-flow	P	11_2	IND - Faye II-II
speed	haun		LOS, S, FFS, v _p - Exhibits 11-3	ı ı-∠,	
DDHV - Directional design	nour volume				

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:22 AM

	BASIC FR	EWAY SE	GMENTS WORKSHEE	T		
General Information			Site Information			
Analyst	LTN		Highway/Direction of Trave	el SB Richa	ardson Highway	
Agency or Company	Kittelson & As	ssociates	From/To	South of	uth of Old Richardson	
Date Performed Analysis Time Period	12/17/2018 PM Peak		Jurisdiction Analysis Year	Hwy DOT&PF 2045 No		
Project Description Richa		/ MP 359 Inter	=	2010110	Dund	
✓ Oper.(LOS)			es.(N)	Plan	ning Data	
Flow Inputs					0	
Volume, V AADT	2366	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 7		
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D		· · · · · · · · · · · · · · · · · · ·	%RVs, P _R General Terrain:	0 Level		
DDHV = AADT x K x D		veh/h	Grade % Length Up/Down %	mi		
Calculate Flow Adjus	tments					
f _p	1.00		E _R	1.2		
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] 0.966		
Speed Inputs			Calc Speed Adj and I	FFS		
Lane Width		ft				
Rt-Side Lat. Clearance		ft	f _{LW}		mph	
Number of Lanes, N	2		f _{LC}		mph	
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph	
FFS (measured)	60.0	mph	FFS	60.0	mph	
Base free-flow Speed, BFFS		mph				
LOS and Performanc	e Measures		Design (N)			
<u> Operational (LOS)</u>			<u>Design (N)</u> Design LOS			
v _p = (V or DDHV) / (PHF x l x f _p)	N x f _{HV} 1303	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln	
S	60.0	mph	x f _p)		ma a b	
D = v _p / S	21.7	pc/mi/ln	S D=v /S		mph	
LOS	С		D = v _p / S Required Number of Lanes	s, N	pc/mi/ln	
Glossary			Factor Location			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-17	

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:23 AM

		RAMP	S AND RAM		ONS WO	RKS	HEET				
General Info	rmation			Site Infor	mation						
Analyst	LTN		Fr	eeway/Dir of Tra	avel	SB Ric	hardson Hi	ghway			
Agency or Company	y Kittels	son & Associa	ites Ju	nction		Lakevie	ew Drive				
Date Performed	12/17	/2018	Ju	risdiction		DOT&F	٣F				
Analysis Time Perio				nalysis Year		2045 N	o Build				
Project Description	Richardson Hig	hway MP 359	Grade Separated	Facility							
Inputs									<u> </u>		
Upstream Adj F	Ramp		nber of Lanes, N er of Lanes, N	2 1					Downstrea Ramp	ım Adj	
□ Yes [On		Lane Length, L _A						Yes	On	
✓ No	Off	Deceleration Freeway Volu	Lane Length L _D	250 839					🗹 No	Off	
L _{up} =	ft	Ramp Volum		100					L _{down} =	ft	
.,		Freeway Free	e-Flow Speed, S _{FF}	60.0					V -	veh/h	
V _u =	veh/h		low Speed, S _{FR}	35.0					V _D =	veh/h	
Conversion											
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	839	0.94	Level	7	0	0.	966	1.00	92	24	
Ramp	100	0.94	Level	7	0	0.	966	1.00	11	0	
UpStream											
DownStream											
Estimation o		Merge Areas			Estimat	iono		verge Areas			
					LStimat						
	$V_{12} = V_{F}$	(P _{FM})						V _R + (V _F - V _F			
L _{EQ} =	(Equa	tion 13-6 or	· 13-7)		L _{EQ} =		(1	Equation 13-1	2 or 13-13)	
P _{FM} =	using	Equation (Exhibit 13-6)		P _{FD} =		1.(000 using Eq	uation (Exhil	oit 13-7)	
V ₁₂ =	pc/h				V ₁₂ =		92	4 pc/h			
V ₃ or V _{av34}	pc/h (l	Equation 13	3-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$		0	pc/h (Equatio	on 13-14 or	13-17)	
Is V ₃ or V _{av34} > 2,7	00 pc/h? 🗌 Yes	s 🗌 No				,34 > 2,7	00 pc/h? 🛛	Yes 🗹 No			
Is V_3 or $V_{av34} > 1.5$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
lf Yes,V _{12a} =			3-16, 13-18, or		If Yes, $V_{12a} = \frac{pc/h}{19}$ (Equation 13-16, 13-18, or 13- 19)						
Capacity Ch	ecks				Capacit	y Ch	ecks	,			
7	Actual	(Capacity	LOS F?	- 		Actual	Ca	pacity	LOS F?	
					V _F		924	Exhibit 13-8	3 4600	No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	814	Exhibit 13-8	3 4600	No	
					V _R		110	Exhibit 13-1	0 2000	No	
Flow Enterin	g Merge In	fluence A	Area		Flow En	nterin	g Diver	rge Influen	ce Area		
	Actual		Desirable	Violation?			Actual	Max Desirat	ole	Violation?	
V _{R12}		Exhibit 13-8			V ₁₂		924	Exhibit 13-8	4400:All	No	
Level of Serv	vice Detern	nination (íif not F)		Level of	f Serv	/ice De	terminatio	n (if not l	=)	
D _R = 5.475 + 0).00734 v _R + (0.0078 V ₁₂	- 0.00627 L _A			D _R = 4	.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/lı	n)				D _R = 9.	.9 (pc/r	ni/ln)				
LOS = (Exhibit	13-2)				LOS = A	(Exhit	oit 13-2)				
Speed Determination					Speed L	Deter	minatio	n			
M _S = (Exibit 1	13-11)				ľ	•	xhibit 13-	,			
S _R = mph (Ex	S _R = mph (Exhibit 13-11)				S _R = 52.1 mph (Exhibit 13-12)						
B_0^{-1} mph (Exhibit 13-11)					S ₀ = N/A mph (Exhibit 13-12)						
	hibit 13-13)				S = 52	2.1 mph	(Exhibit	13-13)			
Copyright © 2016 University of Florida, All Rights Reserved					HCS2010 TM	Version	6.90	Ger	erated: 12/28	2018 8:58 AI	

HCS2010TM Version 6.90

<u> </u>		RAMF	S AND RAM	P JUNCTI	ONS WO	RKS	HEET			
General Infor	rmation			Site Infor	mation					
Analyst	LTN		Fr	eeway/Dir of Tr	avel	SB Ric	hardson Hig	hway		
Agency or Company	Kittel	son & Associa	ates Ju	Inction		Lakevie	ew Drive	-		
Date Performed		//2018		irisdiction		DOT&F	۶F			
Analysis Time Perio				nalysis Year		2045 N	o Build			
Project Description	Richardson Hig	ghway MP 359	9 Grade Separated	Facility						
Inputs			nhor of Longo N	2						
Upstream Adj F			nber of Lanes, N er of Lanes, N	2 1					Downstrea Ramp	m Adj
Yes	On	Acceleration	Lane Length, L _A						Yes	On
✓ No	Off		Lane Length L _D	250					✓ No	Off
L _{up} = 1	ft	Freeway Volu Ramp Volum		1967 86					L _{down} =	ft
up			e-Flow Speed, S _{FF}	60.0						
V _u = v	eh/h		Flow Speed, S _{FF}	60.0 35.0					V _D =	veh/h
Conversion t	o pc/h Und		III							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	1967	0.94	Level	7	0	_	966	1.00	210	66
Ramp	86	0.94	Level	7	0	0.	966	1.00	9	5
UpStream										
DownStream										
		Merge Areas						verge Areas		
Estimation of	r v ₁₂				Estimat	ion o				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	V _R + (V _F - V _F	_R)P _{FD}	
L _{EQ} =	(Equa	tion 13-6 oi	r 13-7)		L _{EQ} =		(E	quation 13-1	2 or 13-13))
P _{FM} =	using	Equation (Exhibit 13-6)		P _{FD} =		1.0	00 using Equ	uation (Exhib	oit 13-7)
V ₁₂ =	pc/h				V ₁₂ =		216	6 pc/h		
V ₃ or V _{av34}	pc/h (Equation 13	3-14 or 13-17)		V ₃ or V _{av34}			pc/h (Equatio	on 13-14 or	13-17)
Is V_3 or $V_{av34} > 2,70$		-				24 > 2,7		Yes 🗹 No		,
Is V_3 or $V_{av34} > 1.5$						• ·		Yes Vo		
If Yes,V _{12a} =		Equation 13	3-16, 13-18, or		If Yes,V _{12a} =	• •		h (Equation	13-16, 13-	18, or 13-
Capacity Che	, , ,				Capacit	v Ch		/		
	Actual	(Capacity	LOS F?	· · · · ·		Actual	Ca	pacity	LOS F?
					V _F		2166	Exhibit 13-8	4600	No
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	-V _R	2071	Exhibit 13-8	4600	No
					V _R		95	Exhibit 13-1	0 2000	No
Flow Entering	g Merge In	fluence A	A <i>rea</i>	u.	Flow En	terin	g Diver	ge Influen		ũ.
	Actual		Desirable	Violation?			Actual	Max Desirab		Violation?
V _{R12}		Exhibit 13-8			V ₁₂		2166	Exhibit 13-8	4400:All	No
Level of Serv								erminatio	•	-)
D _R = 5.475 + 0		0.0078 V ₁₂	- 0.00627 L _A					0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/lr).6 (pc/	-			
LOS = (Exhibit	,						oit 13-2) minatio	n		
Speed Deteri					Speed E D _s = 0.		xhibit 13-			
M _S = (Exibit 1	,					•		,		
IX · · ·					S_{R} = 52.1 mph (Exhibit 13-12) S = N(A mph (Exhibit 13-12)					
	nibit 13-11) nibit 13-13)				S ₀ = N/A mph (Exhibit 13-12) S = 52.1 mph (Exhibit 13-13)					
Copyright © 2016 Univ	,		nved		HCS2010 [™]			,	erated: 12/20	2018 9:09 AM
~~ Jugue @ 2010 0111V	story of Florida, P				1032010	version	0.90	Gen	J. G. G. G. 12/20/	UJ AI

HCS2010TM Version 6.90

		RAI		RAMP JUN		ORKSHE	ET				
Genera	l Infori				Site Infor						
Analyst		LTN		Fr	eeway/Dir of Tr		SB Rich	ardson Hi	nhway		
Agency or (Company		son & Associa		Inction	Old Richardson Highway					
Date Perfor			7/2018		irisdiction	DOT&PF					
Analysis Tir	me Period	AM P	eak	Ar	nalysis Year 2045 No Build						
Project Des	scription	Richardson Hig	ghway MP 359	Grade Separated	Facility						
Inputs										10	
Upstream A	Adj Ramp		Freeway Num	ber of Lanes, N	2					Downstr	eam Adj
			Ramp Numbe	r of Lanes, N	1					Ramp	-
🗌 Yes	On		Acceleration L	ane Length, L _A	750					Yes	On
🗹 No	Off		Deceleration I	Lane Length L _D						✓ No	Off
			Freeway Volu	me, V _F	739						
L _{up} =	ft		Ramp Volume	e, V _R	116					L _{down} =	ft
	e le /le		Freeway Free	-Flow Speed, S _{FF}	60.0					V _D =	veh/h
V _u =	veh/h		Ramp Free-Fl	ow Speed, S _{FR}	45.0					v _D –	VCII/II
Conver	sion to	pc/h Und	der Base	Conditions						I	
(pc/		V	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway	,	(Veh/hr) 739	0.94	Level	0	0	1.0		<u>و</u> 1.00		786
Ramp		116	0.94	Level	0	0	1.0		1.00		123
UpStream		110	0.34	Level	0	0	1.0	00	1.00		125
DownStrea	am										
			Merge Areas		-				iverge Areas		
Estimat	tion of	v ₁₂				Estimati	on of	f v ₁₂			
		V ₁₂ = V _F	(P _{FM})					V ₁₂ = V	V _R + (V _F - V	_R)P _{FD}	
L _{EQ} =		(Equa	ation 13-6 o	r 13-7)		L _{EQ} =		(Equation 13	-12 or 13-	13)
P _{FM} =				tion (Exhibit 13-6)		P _{FD} =			using Equati		-
V ₁₂ =		786 p		,		$V_{12} =$			oc/h	,	,
V ₃ or V _{av34}		•		13-14 or 13-17)		V_3^{12} or V_{av34}			pc/h (Equation	13-14 or 13	-17)
	2,700) pc/h? Yes		,			₄ > 2.70		Yes 🗌 No		,
		V ₁₂ /2 Yes							Yes No		
If Yes,V _{12a}				3-16, 13-18, or		If Yes,V _{12a} =	-	. –	c/h (Equation		13-18, or
		13-19)						13	3-19)		
Capacit	ty Che		1			Capacity	/ Che				
		Actual	C	Capacity	LOS F?			Actual		apacity	LOS F?
						V _F			Exhibit 13		
V _F	0	909	Exhibit 13-8		No	V _{FO} = V _F	- V _R		Exhibit 13		
						V _R			Exhibit 13	3-	
Elow El	ntorino	Merge In	fluence A	roa		<u> </u>	torini	n Divo	rge Influe	nce Are	 a
1 10W EI		Actual	r	Desirable	Violation?		-	ctual	Max De		Violation?
V _{R1}	12	909	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
		ce Detern	nination (if not F)			Serv	ice De	terminatio	on (if no	t F)
		0.00734 v _R + (,					.0086 V ₁₂ - 0		*
D _R = 7	.8 (pc/mi/l	n)				D _R = (p	c/mi/ln)		5	
	(Exhibit 1	3-2)					xhibit	,			
	· ·	ination				Speed D			n		
-	.263 (Exib						xhibit 13				
°	•	,						bit 13-12)			
		Exhibit 13-11)						bit 13-12)			
v	• •	Exhibit 13-11) Exhibit 13-13)				1	-	bit 13-12)			
		sity of Florida, A		vod		р- тр нсs2010 ^{тм}	-		,	Concreted: 1	2/28/2018 9:10 A
Juvriunt © 2	u in Univel	SILV OF FIORIDA. A	w Ruuns Reserv	/eu		HCS20101	Vareion	6 00	(Jenerated: 1	212012UIN 9101

HCS2010TM Version 6.90

Generated: 12/28/2018 9:10 AM

		RAI		RAMP JUN		ORKSHE	EET				
Genera	I Infor		_		Site Infor						
Analyst		LTN			eeway/Dir of Tr	avel		chardson Hi			
Agency or (Date Perfor			son & Associa 7/2018		nction risdiction						
Analysis Ti					nalysis Year			No Build			
				Grade Separated			2045				
Inputs	Jonption				r donity						
Upstream A	Adj Ramp			ber of Lanes, N	2					Downstre	eam Adj
			Ramp Numbe	er of Lanes, N	1					Ramp	
🗌 Yes	On			ane Length, L _A	750					Yes	On
🗹 No	Off			Lane Length L _D	1001					🗹 No	Off
L _{up} =	ft		Freeway Volu	1	1881					L _{down} =	ft
−up	it.		Ramp Volume		485					down	
V _u =	veh/h			-Flow Speed, S _{FF} low Speed, S _{FR}	60.0 45.0					V _D =	veh/h
Convor	cion te	no/h Un/		Conditions	45.0						
	1	v									
(pc/	/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{H∨}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway		1881	0.94	Level	0	0		.000	1.00		2001
Ramp		485	0.94	Level	0	0		.000	1.00		516
UpStream DownStrea							+			_	
Domiouou			Merge Areas				_	I D	iverge Areas		
Estima	tion of	v ₁₂				Estimati	ion (of v ₁₂			
		V ₁₂ = V _F	(P _{EM})					$V_{12} = V_{12}$	/ _R + (V _F - V		
L _{EQ} =			ation 13-6 o	r 13-7)		L _{EQ} =			Equation 13		13)
P _{FM} =				tion (Exhibit 13-6)		P _{FD} =			Ising Equati		
V ₁₂ =		2001	oc/h			V ₁₂ =		p	oc/h		-
V ₃ or V _{av34}		0 pc/l	n (Equation	13-14 or 13-17)	1	V_3 or V_{av34}		F	oc/h (Equation	13-14 or 13-	-17)
		0 pc/h? 🗌 Yes	s 🗹 No				₃₄ > 2,	700 pc/h? \llbracket	Yes 🗌 No)	
Is V_3 or V_a	_{v34} > 1.5 *	V ₁₂ /2 Yes	s 🗹 No			Is V_3 or V_{av3}	₃₄ > 1.	5 * V ₁₂ /2	Yes 🗌 No)	
lf Yes,V _{12a}	=			3-16, 13-18, or		If Yes,V _{12a} =			c/h (Equatio	on 13-16, ⁻	13-18, or
Capaci		13-19)				Capacity			8-19)		
Capaci	ly che	Actual		Capacity	LOS F?			Actual	Ca	apacity	LOS F?
		, lotadi		Japaony	20011	V _F		7101000	Exhibit 13	<u> </u>	
V		0517			No	V _{FO} = V _F	- V_		Exhibit 13		
V _F	0	2517	Exhibit 13-8		No		- K		Exhibit 1		
						V _R			10		
Flow E	ntering	Merge In				Flow En	terii		ge Influe		
V		Actual 2517	Max Exhibit 13-8	Desirable 4600:All	Violation? No	V ₁₂	+	Actual	Max Des Exhibit 13-8	sirable	Violation?
		ice Detern			NU			vico Do	terminatio	n (if no	<u> </u> <i>t E</i>)
		0.00734 v _R + (,					0086 V ₁₂ - (•	
	20.2 (pc/m		12	A		L	− ĸ ic/mi/		12	<u>U</u>	
IN IN	C (Exhibit	,						it 13-2)			
		nination				Speed D			n		
).302 (Exit							13-12)			
Ŭ		Exhibit 13-11)					ph (Ex	(hibit 13-12)			
		Exhibit 13-11)						(hibit 13-12)			
		Exhibit 13-13)				ľ		(hibit 13-13)			
n Copyright © 2	2016 Unive	rsity of Florida, A	II Rights Reserv	ved		<i>H</i> CS2010 [™]		-	(Generated: 1	2/28/2018 9:11 A

HCS2010TM Version 6.90

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	Т					
General Information			Site Information						
Analyst	LTN		Highway/Direction of Travel NB Richardson Highway						
Agency or Company	Kittelson & As	ssociates	From/To	Before N	B Off-Ramp				
Date Performed Analysis Time Period	12/17/2018 AM Peak		DivergeJurisdictionDOT&PFAnalysis Year2045 No Build						
Project Description Richa		/ MP 359 Grad	-	2010110	Duna				
Oper.(LOS)	<u> </u>		es.(N)	Planr	ning Data				
Flow Inputs					0				
Volume, V AADT	2169	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 7					
Peak-Hr Prop. of AADT, K		ven/day	%RVs, P _R	, 0					
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi					
			Up/Down %						
Calculate Flow Adjus	tments								
f _p	1.00		E _R	1.2					
E _T	1.5		f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)] <i>0.966</i>					
Speed Inputs			Calc Speed Adj and I	FS					
Lane Width		ft							
Rt-Side Lat. Clearance		ft	f _{LW}		mph				
Number of Lanes, N	2		f _{LC}		mph				
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph				
FFS (measured)	60.0	mph	, FFS	60.0	mph				
Base free-flow Speed, BFFS		mph		00.0					
LOS and Performanc	e Measures		Design (N)						
Operational (LOS)			<u>Design (N)</u> Design LOS						
v _p = (V or DDHV) / (PHF x l x f _p)	N x f _{HV} 1194	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln				
S	60.0	mph	x f _p)		and the				
D = v _p / S	19.9	pc/mi/ln	S D=v /S		mph				
LOS	С		D = v _p / S Required Number of Lanes	s, N	pc/mi/ln				
Glossary			Factor Location						
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1 ⁻				

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:24 AM

	BASIC FR	EWAY SE	GMENTS WORKSHEE	Т					
General Information			Site Information						
Analyst	LTN		Highway/Direction of Travel NB Richardson Highway						
Agency or Company	Kittelson & As	ssociates	From/To	Before N	B Off-Ramp				
Date Performed Analysis Time Period	12/17/2018 PM Peak		DivergeJurisdictionDOT&PFAnalysis Year2045 No Build						
Project Description Richa		/ MP 359 Grad	-	2070710					
✓ Oper.(LOS)			es.(N)	Planr	ning Data				
Flow Inputs					-				
Volume, V AADT	1506	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 7					
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D		-	%RVs, P _R General Terrain:	0 Level					
DDHV = AADT x K x D		veh/h	Grade % Length Up/Down %	mi					
Calculate Flow Adjus	tments								
f _p	1.00		E _R	1.2					
E _T	1.5		f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)] 0.966					
Speed Inputs			Calc Speed Adj and I	FS					
Lane Width		ft							
Rt-Side Lat. Clearance		ft	f _{LW}		mph				
Number of Lanes, N	2		f _{LC}		mph				
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph				
FFS (measured)	60.0	mph	FFS	60.0	mph				
Base free-flow Speed, BFFS		mph							
LOS and Performanc	e Measures		Design (N)						
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x	Nyf		<u>Design (N)</u> Design LOS						
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln				
S D-V/S	60.0	mph	S		mph				
D = v _p / S	13.8 B	pc/mi/ln	D = v _p / S		pc/mi/ln				
LOS	D		Required Number of Lanes	s, N					
Glossary			Factor Location						
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1				

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:24 AM

Conorallet		RAMP	S AND RAN			DRKS	HEET				
General Info				Site Infor		ND D:					
Analyst	LTN		F	reeway/Dir of Tr	avel		hardson Higl	าway าway Off-Ramp			
gency or Compa	ny Kitte	Ison & Associat	es J	unction			naruson nigi				
Date Performed		7/2018		urisdiction		DOT&F	PF				
Analysis Time Per				nalysis Year		2045 N	o Build				
roject Description	n Richardson Hi	gnway MP 359	Grade Separated	Facility							
		Freeway Num	ber of Lanes, N	2							
Upstream Ad	j Ramp	Ramp Numbe		1					Downstrea Ramp	am Adj	
Yes	On	1 '	ane Length, L_A								
			Lane Length L_{D}	445					Yes	On	
🗹 No	Off	Freeway Volu	В	2169					✓ No	Off	
L _{up} =	ft	Ramp Volume		476					L _{down} =	ft	
·			-Flow Speed, S _{FF}	60.0					V _	. 1. //.	
V _u =	veh/h		ow Speed, S _{FR}	35.0					V _D =	veh/h	
Conversion	to pc/h Un										
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x fuy x f	
Freeway	(Veh/hr) 2169	0.94		7	0		966	р 1.00	23	I.	
Ramp	476	0.94	Level	7	0	_	966	1.00	23 52		
UpStream	470	0.04	LOVOI	'	0		300	1.00		- 7	
DownStream											
- 41		Merge Areas			F ations	<u></u>		verge Areas			
Estimation					Estima	tion o					
	V ₁₂ = V _F						•=	/ _R + (V _F - V _R			
EQ =		ation 13-6 or			L _{EQ} =			quation 13-1			
P _{FM} =	-	Equation (E	Exhibit 13-6)		P _{FD} =			0 using Equ	ation (Exhi	bit 13-7)	
/ ₁₂ =	pc/h				V ₁₂ =			8 pc/h			
/ ₃ or V _{av34}	-		-14 or 13-17)		V ₃ or V _{av34}			oc/h (Equatio	n 13-14 or	13-17)	
	,700 pc/h? 🗌 Ye				Is V_3 or $V_{av34} > 2,700$ pc/h? Yes V No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes V No						
	.5 * V ₁₂ /2 Ye		-16, 13-18, or		۳ °			Yes ⊻No /h (Equation	13-16 13.	.18 or 13	
f Yes,V _{12a} =	13-19		10, 10-10, 01		lf Yes,V _{12a}	=	19)		10-10, 10-	10, 01 10	
Capacity Cl	hecks	_			Capacity Checks						
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F	
					V _F		2388	Exhibit 13-8	4600	No	
V _{FO}		Exhibit 13-8			V _{FO} = V		1864	Exhibit 13-8	4600	No	
					V _R		524	Exhibit 13-10	2000	No	
-low Enteri	ng Merge Ir	r			Flow E	_	<u> </u>	ge Influen		1	
λ/	Actual	i r	Desirable	Violation?		_	Actual	Max Desirab		Violation	
V _{R12}		Exhibit 13-8	(V ₁₂		2388	Exhibit 13-8	4400:All	No	
	rvice Deteri	•	,		Level o					-)	
	0.00734 v _R +	0.0078 V ₁₂ -	0.00027 L _A		D			086 V ₁₂ - 0.0	na r ^D		
0 _R = (pc/mi						20.8 (pc)	,				
-	it 13-2)				-		oit 13-2)				
Speed Dete					1-1		mination				
-	13-11)				, e	•	xhibit 13-1				
IX · · ·	xhibit 13-11)				S _R = 51.4 mph (Exhibit 13-12) S₀= N/A mph (Exhibit 13-12)						
0 1 1	xhibit 13-11) xhibit 13-13)				l °			,			
	ALIULI 1.3-1.31				N- 5	01.4 MDh	(Exhibit 1	3-13)			

HCS2010TM Version 6.90

Generated: 12/28/2018 10:18 AM

0		RAMP	S AND RAM			DRKS	HEET				
General Inforn				Site Infor							
Analyst	LTN			reeway/Dir of Tr	avel		hardson High	nway nway Off-Ramp			
Agency or Company	Kittel	son & Associat	es J	unction		NDING	laruson nigi				
Date Performed		7/2018		urisdiction		DOT&F	PF				
Analysis Time Period	PM F			nalysis Year		2045 N	o Build				
Project Description F	lichardson Hig	ghway MP 359	Grade Separated	Facility							
Inputs	~~~	Freeway Num	ber of Lanes, N	2					Downotro	m Adi	
Upstream Adj Rar	пр	Ramp Numbe	r of Lanes, N	1					Downstrea Ramp	am Auj	
Yes	On	Acceleration L	ane Length, L_A						Yes	On	
✓ No	Off		ane Length L _D	445							
	Oli	Freeway Volu	me, V _F	1506					🗹 No	Off	
L _{up} = ft		Ramp Volume	, V _R	194					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0				,	V -	voh/h	
V _u = vel	1/h	Ramp Free-Fl	ow Speed, S _{FR}	35.0					V _D =	veh/h	
Conversion to	pc/h Uno		III					I			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _c	
reeway	1506	0.94	Level	7	0	_	966	1.00	16	58	
Ramp	194	0.94	Level	7	0	0.	966	1.00	2	14	
JpStream											
DownStream											
Estimation of		Merge Areas			Estima	tion o		verge Areas			
					Louna						
_	$V_{12} = V_{F}$		40.7)					/ _R + (V _F - V _R		、	
-EQ =		ation 13-6 or			L _{EQ} =			quation 13-1			
2 _{FM} =	pc/h	Equation (E	EXHIBIT 13-0)		P _{FD} = V ₁₂ =			0 using Equ	lation (Exhi	DIT 13-7)	
$l_{12} = l_{12}$		Equation 13	-14 or 13-17)		V ₁₂ – V ₃ or V _{av34}			8 pc/h	n 12 14 or	12 17)	
/ ₃ or V _{av34} Is V ₃ or V _{av34} > 2,700			-14 01 13-17)		V ₃ or V _{av34} 0 pc/h (Equation 13-14 or 13-17) Is V ₃ or V _{av34} > 2,700 pc/h? □ Yes ☑ No						
ls V ₃ or V _{av34} > 2,700 ls V ₃ or V _{av34} > 1.5 * \								Yes ⊻No			
			-16, 13-18, or					/h (Equation	13-16. 13-	-18. or 13	
Yes,V _{12a} =	13-19)		,,,		lf Yes,V _{12a}		19)		,	,	
Capacity Chec					Capaci	ty Che				11	
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F	
					V _F		1658	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			V _{FO} = V		1444	Exhibit 13-8		No	
					V _R		214	Exhibit 13-10		No	
Flow Entering	-	1			Flow E		<u> </u>	<u>e Influen</u>		1	
	Actual	i r	Desirable	Violation?			Actual	Max Desirab		Violation	
V _{R12} Level of Servio	Do Dotorr	Exhibit 13-8	if not E)		V ₁₂			Exhibit 13-8	4400:All	No E)	
$D_{R} = 5.475 + 0.00$		•	/		LeverO			086 V ₁₂ - 0.0		'/	
D _R = 0.473 + 0.0) _R = (pc/mi/ln)	" " R '	•.••••• ₁₂	5.00027 LA		D _R = 1	4.5 (pc/		• • • • • • • • • • • • • • • • • • •			
OS = (Exhibit 13)	3-2)						bit 13-2)				
Speed Determ	-				-		,	,			
					Speed Determination D _s = 0.447 (Exhibit 13-12)						
M _S = (Exibit 13-					, , , , , , , , , , , , , , , , , , ,	•	(Exhibit 13-1	,			
S _R = mph (Exhib							(Exhibit 13				
S ₀ = mph (Exhib S = mph (Exhib	,						(Exhibit 1	,			
					N - 0	า.ฮ เมpก		J-1J)			

HCS2010TM Version 6.90

Generated: 12/28/2018 10:19 AM

Attachment B 2045 Concept Traffic Conditions Worksheets Year 2045 Diamond Interchange Traffic Condition AM Peak Hour 1: Lakeview Dr & Old Richardson Hwy

	ار	-	•	4	+	×	1	t	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1		٦	†			4			با	1
Traffic Volume (veh/h)	0	88	27	54	458	0	40	0	15	10	40	50
Future Volume (Veh/h)	0	88	27	54	458	0	40	0	15	10	40	50
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	96	29	59	498	0	43	0	16	11	43	54
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	498			125			802	726	110	742	741	498
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	498			125			802	726	110	742	741	498
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			96			82	100	98	97	87	91
cM capacity (veh/h)	1066			1462			239	337	943	316	330	572
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	125	59	498	59	54	54						
Volume Left	0	59	0	43	11	0						
Volume Right	29	0	0	16	0	54						
cSH	1700	1462	1700	300	327	572						
Volume to Capacity	0.07	0.04	0.29	0.20	0.17	0.09						
Queue Length 95th (ft)	0	3	0	18	15	8						
Control Delay (s)	0.0	7.6	0.0	19.9	18.2	11.9						
Lane LOS		А		С	С	В						
Approach Delay (s)	0.0	0.8		19.9	15.1							
Approach LOS				С	С							
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utiliza	tion		40.8%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Year 2045 Diamond Interchange Traffic Condition AM Peak Hour 2: SB Richardson Hwy Off Ramp /On-Ramp

	ار	→	¥	4	+	×	•	1	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$						eî.			د ا	
Traffic Volume (veh/h)	20	0	1	0	0	0	0	5	111	90	476	0
Future Volume (Veh/h)	20	0	1	0	0	0	0	5	111	90	476	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	0	1	0	0	0	0	5	121	98	517	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	778	839	517	780	778	66	517			126		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	778	839	517	780	778	66	517			126		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	93	100	100	100	100	100	100			93		
cM capacity (veh/h)	297	282	558	296	305	998	1049			1460		
Direction, Lane #	EB 1	NB 1	SB 1									
Volume Total	23	126	615									
Volume Left	22	0	98									
Volume Right	1	121	0									
cSH	303	1700	1460									
Volume to Capacity	0.08	0.07	0.07									
Queue Length 95th (ft)	6	0.07	5									
Control Delay (s)	17.8	0.0	1.8									
Lane LOS	C	0.0	A									
Approach Delay (s)	17.8	0.0	1.8									
Approach LOS	C	0.0	1.0									
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utiliza	ation		46.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	٦	+	¥	4	Ļ	×	•	t	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲	4Î			با			4Î	
Traffic Volume (veh/h)	0	0	0	476	1	67	0	25	0	0	90	93
Future Volume (Veh/h)	0	0	0	476	1	67	0	25	0	0	90	93
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	517	1	73	0	27	0	0	98	101
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	249	176	148	176	226	27	199			27		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	249	176	148	176	226	27	199			27		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	34	100	93	100			100		
cM capacity (veh/h)	655	718	898	787	673	1048	1373			1587		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1								
Volume Total	517	74	27	199								
Volume Left	517	0	0	0								
Volume Right	0	73	0	101								
cSH	787	1041	1373	1700								
Volume to Capacity	0.66	0.07	0.00	0.12								
Queue Length 95th (ft)	125	6	0	0								
Control Delay (s)	17.9	8.7	0.0	0.0								
Lane LOS	С	А										
Approach Delay (s)	16.7		0.0	0.0								
Approach LOS	С											
Intersection Summary												
Average Delay			12.1									
Intersection Capacity Utiliza	ation		43.5%	IC	CU Level o	of Service			А			
Analysis Period (min)			15						<u> </u>			

Year 2045 Diamond Interchange Traffic Conditions PM Peak Hour 1: Lakeview Dr & Old Richardson Hwy HCM Ur

Lane Configurations Image: Configurations <		ار	-	7	4	+	×	٠	t	*	1	ţ	~
Traffic Volume (veh/h) 0 458 40 27 175 0 13 0 35 8 35 42 Future Volume (veh/h) 0 458 40 27 175 0 13 0 35 8 35 43 Sign Control Free Free Stop Stop Stop 0%	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (Veh/h) 0 458 40 27 175 0 13 0 35 8 35 43 Sign Control Free Free Stop Stop Stop Stop Stop Grade 0% 0 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	Lane Configurations		†		٦	↑			4			با	7
Sign Control Free Free Stop Stop Grade 0%<	Traffic Volume (veh/h)	0	458	40	27	175	0	13	0	35	8	35	43
Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92 <td< td=""><td>Future Volume (Veh/h)</td><td>0</td><td>458</td><td>40</td><td>27</td><td>175</td><td>0</td><td>13</td><td>0</td><td>35</td><td>8</td><td>35</td><td>43</td></td<>	Future Volume (Veh/h)	0	458	40	27	175	0	13	0	35	8	35	43
Peak Hour Factor 0.92	Sign Control		Free			Free			Stop			Stop	
Hourly flow rate (vph) 0 498 43 29 190 0 14 0 38 9 38 47 Pedestrians Lane Width (ft) Walking Speed (ft/s)	Grade		0%			0%			0%			0%	
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median type None None Median storage veh) Upstream signal (ft) PX, platoon unblocked VC, conflicting volume 190 541 834 768 520 806 789 190 VC1, stage 1 conf vol VC2, stage 2 conf vol VC1, stage 1 conf vol VC1, stage 1 conf vol VC1, stage 1 conf vol VC2, stage (s) VC1, stage 1 conf vol VC1, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 2 conf vol VC2,	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol volume Left 0 29 0 14 9 0 volume Right 43 0 0 38 0 47 cSH Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 111 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2	Hourly flow rate (vph)	0	498	43	29	190	0	14	0	38	9	38	47
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median torage veh) Upstream signal (ft) pX, platon unblocked vC, conflicting volume 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2, stage 1 conf vol vc2, stage 1 conf vol vc2, stage 1 conf vol vc4, unblocked vol 190 541 834 768 520 806 789 190 vC2, stage 2 conf vol vc4, unblocked vol 190 541 834 768 520 806 789 190 vC2, stage (s) tf (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 2	Pedestrians												
Percent Blockage None None None Median type None None None Median storage veh) Upstream signal (ft) Free storage veh) Free storage veh) pX, platoon unblocked 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2 vc2, stage 2 conf vol vc2, stage 2 conf vol vc2 vc1 65 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 8.9 9.0 7.1 8.8 9.2 7.1 7.1	Lane Width (ft)												
Percent Blockage None None None Median type None None None Median storage veh) Upstream signal (ft) Free storage veh) Free storage veh) pX, platoon unblocked 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2 vc2, stage 2 conf vol vc2, stage 2 conf vol vc2 vc1 65 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 8.9 9.0 7.1 8.8 9.2 7.1 7.1	Walking Speed (ft/s)												
Median type None None Median storage veh) Upstream signal (ft) </td <td></td>													
Median type None None Median storage veh) Upstream signal (ft) </td <td></td>													
Median storage veh) Upstream signal (ft) pX, platoon unblocked 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 2 co			None			None							
Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage (s) respectively (s) 6.2 7.1 6.5 6.2 7.1 6.5 6.2 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, single (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 NB 1 SB 1 SB 2 SE V0 Volume Left 0 29 0 14 9 0 Volume Right 43 </td <td>,,</td> <td></td>	, ,												
pX, platoon unblocked 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4 41 834 768 520 806 789 190 vC2, stage 2 conf vol vC4 unblocked vol 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4 4.1 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 6.5 6.2 7.1 8.5 6.2 7.1 8.5 7.4 3.3 3.5 4.0 3.3 3.5 4.0 3.3 9.4 7.4 <t< td=""><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	• •												
vC, conflicting volume 190 541 834 768 520 806 789 190 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, sigle (s) 834 768 520 806 789 190 vC1, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) vc1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 2 V V V Volume Total 541 29 190 52 47 47 V V V V V V V V V V V V V V V V													
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 190 541 834 768 520 806 789 190 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) tr 4.1 7.1 6.5 6.2 7.1 6.5 6.2 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 2 V V V Volume Total 541 29 190 52 47 47 V Volume Left 0 29 0 14 9 0 V		190			541			834	768	520	806	789	190
vC2, stage 2 conf vol vCu, unblocked vol 190 541 834 768 520 806 789 190 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) 97 94 100 93 97 88 94 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 1 SB 2 556 274 314 852 Volume Total 541 29 190 52 47 47 57 56 274 314 852 Volume Total 541 29 190 52 47 47 50 56 274 314 852 Volume Total 541 29 190 52 47 47 50 52 56 56 5													
vCu, unblocked vol 190 541 834 768 520 806 789 190 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 8.5 7.0 3.3 3.5 4.0 3.3 3.5 4.0 3.5 6.5 2.74 314 852 7.0 7.1 6.5													
tC, single (s) 4.1 7.1 6.5 6.2 7.1 6.5		190			541			834	768	520	806	789	190
tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 1 SB 2 556 274 314 852 Volume Total 541 29 190 52 47 47 47 43 0 0 38 0 47 555 52 556 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 41 852 56 57 56 57		4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 1 SB 2 Volume Total 541 29 190 52 47 47 Volume Left 0 29 0 14 9 0 Volume Right 43 0 0 3852 2 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4													
p0 queue free % 100 97 94 100 93 97 88 94 cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 1 SB 2 Volume Total 541 29 190 52 47 47 Volume Left 0 29 0 14 9 0 Volume Right 43 0 0 38 0 47 cSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 5 Lane LOS A C C A C C A Approach Delay (s) 0.0 1.1 15.0 14.2 4 <t< td=""><td></td><td>2.2</td><td></td><td></td><td>2.2</td><td></td><td></td><td>3.5</td><td>4.0</td><td>3.3</td><td>3.5</td><td>4.0</td><td>3.3</td></t<>		2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
cM capacity (veh/h) 1384 1028 241 323 556 274 314 852 Direction, Lane # EB 1 WB 1 WB 2 NB 1 SB 1 SB 2 Volume Total 541 29 190 52 47 47 Volume Left 0 29 0 14 9 0 Volume Right 43 0 0 38 0 47 CSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A C C A Approach Delay (s) 0.0 1.1 15.0 14.2 4		100			97				100				94
Volume Total 541 29 190 52 47 47 Volume Left0 29 0 14 9 0Volume Right 43 00 38 0 47 cSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft)020 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOSACCAApproach Delay (s) 0.0 1.1 15.0 14.2					1028			241					852
Volume Left02901490Volume Right430038047cSH170010281700412305852Volume to Capacity0.320.030.110.130.150.06Queue Length 95th (ft)02011134Control Delay (s)0.08.60.015.018.99.5Lane LOSACCAApproach Delay (s)0.01.115.014.2	Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Right 43 0 0 38 0 47 cSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2	Volume Total	541	29	190	52	47	47						
cSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2	Volume Left	0	29	0	14	9	0						
cSH 1700 1028 1700 412 305 852 Volume to Capacity 0.32 0.03 0.11 0.13 0.15 0.06 Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2	Volume Right	43	0	0	38	0	47						
Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2		1700	1028	1700	412	305	852						
Queue Length 95th (ft) 0 2 0 11 13 4 Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2	Volume to Capacity	0.32	0.03	0.11	0.13	0.15	0.06						
Control Delay (s) 0.0 8.6 0.0 15.0 18.9 9.5 Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2		0	2	0	11	13	4						
Lane LOS A C C A Approach Delay (s) 0.0 1.1 15.0 14.2		0.0	8.6	0.0	15.0	18.9							
Approach Delay (s) 0.0 1.1 15.0 14.2			А		С	С	А						
		0.0											
Approach LOS C B	Approach LOS				С	В							
Intersection Summary	Intersection Summary												
Average Delay 2.6	Average Delay			2.6									
Intersection Capacity Utilization 42.7% ICU Level of Service A	Intersection Capacity Utiliza	ation			IC	CU Level o	of Service			А			
Analysis Period (min) 15				15									

Year 2045 Diamond Interchange Traffic Conditions PM Peak Hour 2: SB Richardson Hwy Off-Ramp/ On-Ramp

	٨	→	¥	4	+	×	٩	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$						4Î			د	
Traffic Volume (veh/h)	20	0	1	0	0	0	0	5	480	86	194	0
Future Volume (Veh/h)	20	0	1	0	0	0	0	5	480	86	194	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	0	1	0	0	0	0	5	522	93	211	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	663	924	211	664	663	266	211			527		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	663	924	211	664	663	266	211			527		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	100	100	100	100	100	100			91		
cM capacity (veh/h)	349	245	829	348	347	773	1360			1040		
Direction, Lane #	EB 1	NB 1	SB 1									
Volume Total	23	527	304									
Volume Left	22	0	93									
Volume Right	1	522	0									
cSH	358	1700	1040									
Volume to Capacity	0.06	0.31	0.09									
Queue Length 95th (ft)	5	0	7									
Control Delay (s)	15.7	0.0	3.3									
Lane LOS	С		А									
Approach Delay (s)	15.7	0.0	3.3									
Approach LOS	С											
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization	on		58.3%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

	۶	+	¥	4	+	×.	•	t	۲	1	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲	¢î			Ł			4Î	
Traffic Volume (veh/h)	0	0	0	194	1	88	0	25	0	0	86	92
Future Volume (Veh/h)	0	0	0	194	1	88	0	25	0	0	86	92
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	211	1	96	0	27	0	0	93	100
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	266	170	143	170	220	27	193			27		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	266	170	143	170	220	27	193			27		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	73	100	91	100			100		
cM capacity (veh/h)	623	723	905	794	678	1048	1380			1587		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1								
Volume Total	211	97	27	193								
Volume Left	211	0	0	0								
Volume Right	0	96	0	100								
cSH	794	1043	1380	1700								
Volume to Capacity	0.27	0.09	0.00	0.11								
Queue Length 95th (ft)	27	8	0	0								
Control Delay (s)	11.2	8.8	0.0	0.0								
Lane LOS	В	А										
Approach Delay (s)	10.4		0.0	0.0								
Approach LOS	В											
Intersection Summary												
Average Delay			6.1									
Intersection Capacity Utilization	n		27.6%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highway
Agency or Company	Kittelson & A	ssociates	From/To	East of A	AK Railroad Spur
Date Performed	12/18/2018		Jurisdiction	Line DOT&PI	E
		MDeek			Concept w/ Base
Analysis Time Period	Year 2045 A		Analysis Year	Access	,
	ardson Highwa		de Separated Facility		
✓ Oper.(LOS)			es.(N)	Plan	ining Data
Flow Inputs					
Volume, V	2237	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Venin	Up/Down %	1111	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		-κ f _{HV} = 1/[1+Ρ _T (E _T - 1) + Ρ _R (E _R - 1)		
	1.0				
Speed Inputs			Calc Speed Adj and F	<u>5</u>	
Lane Width		ft			
Rt-Side Lat. Clearance	_	ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph			F
BFFS LOS and Performanc	- Meeeuwe	· ·	Deciser (N)		
LOS and Performanc	e measures	5	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x)$	N x fui		Design LOS		
x f _p)	^{HV} 1232	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x I)$	√ x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		p0/1/11
	20.5		S		mph
$D = v_p / S$	20.5 C	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	U		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed			f Eykikit dd O
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	44.40	f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-1
speed	2.10 00		LOS, S, FFS, v _p - Exhibits ²	11-2,	
DDHV - Directional design	hour volume		11-3		
Convright © 2016 University of Florid			HCS 2010 TM Version 6.00		ted: 12/28/2018 9:57 A

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:57 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highway
Agency or Company	Kittelson & A	ssociates	From/To	East of A	AK Railroad Spur
Date Performed	12/18/2018		Jurisdiction	Line DOT&PI	=
					Concept w/ Base
Analysis Time Period	Year 2045 P		Analysis Year	Access	
	rdson Highwa		de Separated Facility		
✓ Oper.(LOS)			es.(N)	Plan	ning Data
Flow Inputs					
Volume, V	1588	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Venin	Up/Down %	1111	
Calculate Flow Adjus	tments		- p , .		
f _p	1.00		E _R	1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	10.966	
Speed Inputs			Calc Speed Adj and F		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f		mah
Number of Lanes, N	2	n	f _{LW}		mph
	2	romno/mi	f _{LC}		mph
Total Ramp Density, TRD	<u> </u>	ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	5	Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
v _p = (V or DDHV) / (PHF x	N x f _{HV 874}	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x f)$	N x f	
x f _p)	074	permit	٣	• A 'HV	pc/h/ln
S	60.0	mph	x f _p) S		mah
D = v _p / S	14.6	pc/mi/ln			mph
LOS	В		$D = v_p / S$		pc/mi/ln
			Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed	E _R - Exhibits 11-10, 11-12		f _{I W} - Exhibit 11-8
V - Hourly volume	D - Dens	sity	E_{T} - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _n - Page 11-18		TRD - Page 11-1
LOS - Level of service	BFFS - Ba	ase free-flow	LOS, S, FFS, v _p - Exhibits 1	11-2	
	hourvolume		11-3	· · <i>노</i> ,	
DDHV - Directional design		nved			red: 12/28/2018 9:58 A

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90

Generated: 12/28/2018 9:58 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highwav
Agency or Company	Kittelson & A	ssociates	From/To	East of I	Denali Park Off-
Date Performed	12/18/2018	0000/0100	Jurisdiction	Ramp DOT&PI	=
					Concept w/ Base
Analysis Time Period	Year 2045 A		Analysis Year	Access	,
	rdson Highwa		de Separated Facility		
✓ Oper.(LOS)			Des.(N)	Plan	ining Data
Flow Inputs					
Volume, V	1786	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Veniin	Up/Down %		
Calculate Flow Adjus	tments		•p.=•		
f _p	1.00		E _R	1.2	
Ε _T	1.5				
	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and F	15	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph		••••	
BFFS		•	Decime (N)		
LOS and Performanc		5	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x)$	Nxf		Design LOS		
$x f_p$ ($t = 0.22110$), ($t = 0.22110$)	^{HV} 983	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		permit
	16.4	-	S		mph
D = v _p / S		pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed			
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	44.40	f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-1
speed			LOS, S, FFS, v _p - Exhibits 1	11-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid	da All Diabta Daar	mind	HCS 2010 TM Version 6.90	Conorata	d [.] 12/28/2018 10:04 A

HCS 2010TM Version 6.90 Generated: 12/28/2018 10:04 AM

	BASIC FR	EEWAY SE		Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highway
Agency or Company	 Kittelson & A		From/To	East of L	Denali Park Off-
• • • •		13300/8/83		Ramp	-
Date Performed	12/18/2018		Jurisdiction	DOT&PI Flvover	- Concept w/ Base
Analysis Time Period	Year 2045 P	PM Peak	Analysis Year	Access	
Project Description Richa	rdson Highwa	ay MP 359 Grad	de Separated Facility		
✓ Oper.(LOS)			Des.(N)	Plan	ning Data
Flow Inputs					
Volume, V	1404	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain:	Level	
		ven/n	Grade % Length Up/Down %	mi	
Calculate Flow Adjus	tmonts				
	1.00		E _R	1.2	
f _p					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,			IFF J	00.0	ттрп
BFFS		mph			
LOS and Performanc	<u>e Measures</u>	S	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$\frac{Operational (LOS)}{V} = (V \circ r DDUV) / (DUE v)$	Nvf		Design LOS		
v _p = (V or DDHV) / (PHF x	^{HV} 773	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	√x f _{HV}	··
x f _p)	<u> </u>		x f _p)		pc/h/ln
S (C	60.0	mph	S		mph
$D = v_p / S$	12.9	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	. N	
Glossary			Factor Location	, 	
N - Number of lanes	S - Spee	ad			
. <i>.</i>	-		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
•	D - Dens	-	E _T - Exhibits 11-10, 11-11, 1	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate LOS - Level of service		e-flow speed ase free-flow	f _p - Page 11-18		TRD - Page 11-1
speed	DI F 3 - De		LOS, S, FFS, v _p - Exhibits 1	1-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid		an cod	HCS 2010 TM Version 6.90	0	d [.] 12/28/2018 10.04 A

HCS 2010TM Version 6.90 Generated: 12/28/2018 10:04 AM

0	6	KAMP	S AND RAM			JKKS	HEEI			
General Int				Site Infor						
Analyst	LTN			reeway/Dir of Tr	5,					
Agency or Comp	-	Ison & Associat		unction	Flyover Interchange Off-Ramp					
Date Performed		8/2018		urisdiction		DOT&F				
Analysis Time Pe	on Richardson Hi	r 2045 AM Peak		nalysis Year		Fiyover	Concept v	v/out Base		
nputs		Ignway IMP 309	Grade Separated	racility						
•		Freeway Num	ber of Lanes, N	2						
Upstream A	dj Ramp								Downstrea	am Adj
Yes	On	Ramp Number		1					Ramp	
			ane Length, L _A						Yes	On
✓ No	Off	Deceleration L	ane Length L _D	307					🗹 No	Off
		Freeway Volu	me, V _F	2169						
L _{up} =	ft	Ramp Volume	, V _R	476					L _{down} =	ft
		Freeway Free	Flow Speed, S _{FF}	60.0					V _	e le /le
V _u =	veh/h		ow Speed, S _{FR}	45.0					V _D =	veh/h
onvorsio	n to pc/h Un			10.0						
				I						
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x t _{HV} x f _p
reeway	2169	0.94	Level	7	0	0.	966	1.00	23	88
Ramp	476	0.94	Level	7	0	0.	966	1.00	24	
JpStream										
DownStream										
		Merge Areas				-		Diverge Areas		
stimation	of v ₁₂				Estimat	tion o	f v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	· V _R + (V _F - V _F	P _{FD}	
_{EQ} =		ation 13-6 or	13-7)		L _{EQ} =			Equation 13-1)
FM =		Equation (E	-		P _{FD} =		-	000 using Equ		-
нм 12 =	pc/h) _ qaaaaaaa (_			V ₁₂ =			88 pc/h		
	•	(Equation 12	14 or 12 17					•	- 10 11 -	40 47)
/ ₃ or V _{av34}		(Equation 13-	-14 01 13-17)		V_3 or V_{av34}	. 0.7		pc/h (Equatio	11 13-14 0	13-17)
	2,700 pc/h? 🗌 Ye							Yes 🗹 No		
$s V_3 \text{ or } V_{av34} > 7$	1.5 * V ₁₂ /2		10 10 10		Is V ₃ or V _{av}	_{/34} > 1.5		Yes 🗹 No		10 10
Yes,V _{12a} =	pc/n (13-19		-16, 13-18, or		If Yes,V _{12a} =	=	p 19	c/h (Equation	13-16, 13	-18, or 13-
Capacity C		/			Capacit	v Ch		57		
upuen y e	Actual	С	apacity	LOS F?		<u>, </u>	Actual	Ca	pacity	LOS F
			- <u> </u>		V _F		2388	Exhibit 13-8	1	No
V _{FO}		Exhibit 13-8			V _{FO} = V _F	- V	1864	Exhibit 13-8	_	No
* FO					-	R R			_	_
	<u> </u>				V _R		524	Exhibit 13-1		No
low Enter	<u>ing Merge Ir</u>				Flow Er	_	-	rge Influen		
	Actual		Desirable	Violation?		_	Actual	Max Desirab	-	Violation
		Exhibit 13-8			V ₁₂		2388	Exhibit 13-8	4400:All	No
V _{R12}	ervice Deteri				Level of	f Serv	vice De	terminatio	n (if not	F)
V _{R12} .evel of Se		0 0078 \/	0.00627 L _A			D _R = 4	.252 + 0	.0086 V ₁₂ - 0.0	009 L _D	
evel of Se	+ 0.00734 v _R +	0.0070 v ₁₂ -			D _R = 22	2.0 (pc	/mi/ln)			
.evel of Se D _R = 5.475 +	+ 0.00734 v _R +	0.0070 v ₁₂ -			- K					
.evel of Se D _R = 5.475 + _R = (pc/m	+ 0.00734 v _R + ni/ln)	0.0078 V ₁₂ -			1 ···	(Exhil	oit 13-2)			
$D_R = 5.475 + 0$ $D_R = (pc/m)$ OS = (Exhild)	+ 0.00734 v _R + ni/ln) bit 13-2)	0.0078 v ₁₂ -			LOS = C		oit 13-2) minatic	n		
evel of Se D _R = 5.475 + R = (pc/m) OS = (Exhill Speed Dete	+ 0.00734 v _R + ii/ln) bit 13-2) ermination	0.0070 V ₁₂ -			LOS = C Speed L	Deter	minatic			
$\frac{evel of Se}{D_R = 5.475 + 0}$ $\frac{D_R = (pc/m)}{OS = (Exhill)$ $\frac{Speed Dete}{I_S = (Exhill)}$	+ 0.00734 v _R + ni/In) bit 13-2) ermination it 13-11)	0.0070 v ₁₂ -			LOS = C Speed L D _s = 0.	Deter .345 (E	minatic xhibit 13-	-12)		
evel of Se $D_R = 5.475 + 0$ R = (pc/m) OS = (Exhild) CS = (Exhi	+ 0.00734 v _R + hi/ln) bit 13-2) e <i>rmination</i> it 13-11) Exhibit 13-11)				LOS = C Speed L D _s = 0. S _R = 5.	Deter .345 (E 3.8 mph	minatio xhibit 13- (Exhibit	-12) 13-12)		
evel of Se $D_R = 5.475 + 0$ R = (pc/m) OS = (Exhild) CS = (Exhild) CS = (Exhild) $R_R = mph (E)$ $R_R = mph (E)$ $R_R = mph (E)$	+ 0.00734 v _R + ni/In) bit 13-2) ermination it 13-11)				LOS = C Speed L D _s = 0. S _R = 5.	Deter .345 (E 3.8 mph	minatic xhibit 13-	-12) 13-12)		

0	6 (*	RAMP	S AND RAM			RKS	HEET			
General In				Site Infor			-			
nalyst	LTN			eeway/Dir of Tr			hardson Hi			
gency or Comp	-	elson & Associat		Inction	Flyover Interchange Off-Ramp					
ate Performed		8/2018 - 2045 DM Deels		Irisdiction		DOT&F				
nalysis Time Pe	on Richardson H	r 2045 PM Peak		nalysis Year		Fiyover	Concept	w/out Base		
nputs	OII RICHAIUSOII H	Ignway IMP 559	Grade Separated	гасшу						
-		Freeway Num	per of Lanes, N	2						
Upstream A	dj Ramp								Downstre	am Adj
Yes	On	Ramp Number		1					Ramp	
			ane Length, L _A						Yes	On
🗹 No	Off	Deceleration L	ane Length L _D	307					🗹 No	Off
		Freeway Volur	ne, V _F	1506						
L _{up} =	ft	Ramp Volume	, V _R	194					L _{down} =	ft
.,		Freeway Free-	Flow Speed, S _{FF}	60.0					V -	voh/h
V _u =	veh/h	Ramp Free-Flo		45.0					V _D =	veh/h
onversio	n to pc/h Un		IR							
				A/ T 1		<u> </u>	6	6		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = v/PHF	x f _{HV} x f _p
reeway	1506	0.94	Level	7	0	0.	966	1.00	1	658
Ramp	194	0.94	Level	7	0	0.	966	1.00	2	14
JpStream										
ownStream										
'otimotion	f - v	Merge Areas			Fatimat	ion o	<u> </u>	Diverge Areas		
stimation	1 of V ₁₂				Estimat	ion o	^{r v} 12			
	$V_{12} = V_{F}$	- (P _{FM})					V ₁₂ =	• V _R + (V _F - V _R	P _{FD}	
_{EQ} =	(Equ	ation 13-6 or	13-7)		L _{EQ} =		(Equation 13-1	2 or 13-13	3)
FM =	using	Equation (E	xhibit 13-6)		P _{FD} =		1.	000 using Equ	ation (Exh	ibit 13-7)
12 =	pc/h				V ₁₂ =			58 pc/h	,	,
$_{3}^{12}$ or V _{av34}	•	(Equation 13-	14 or 13-17)		V_3^{12} or V_{av34}^{12}			pc/h (Equatio	n 13-14 o	r 13-17)
	2,700 pc/h? □ Ye					> 2 7		Yes ⊻No		11011)
	1.5 * V ₁₂ /2 □ Ye					• ·		Yes VNO		
			16, 13-18, or			•		oc/h (Equation	13-16 13	-18 or 13.
Yes,V _{12a} =	13-19		10, 10-10, 01		If Yes,V _{12a} =	=	۲ 1		10-10, 10	-10, 01 15
Capacity C	Checks				Capacit	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		1658	Exhibit 13-8	4600	No
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	1444	Exhibit 13-8	4600	No
10					V _R		214	Exhibit 13-10	2100	No
low Entor	ing Merge II	nfluonco A	<u>roa</u>			torin		rge Influend		
TOW LITTER	Actual		Desirable	Violation?	FIOW EI		Actual	Max Desirab		Violation
V _{R12}	7.0000	Exhibit 13-8		Violation	V ₁₂		1658	Exhibit 13-8	4400:All	No
	ervice Deter		f not E)					terminatior		
			,		1				-	г)
	+ 0.00734 v _R +	0.0076 v ₁₂ -	0.00027 L _A					.0086 V ₁₂ - 0.0	JU9 L _D	
_R = (pc/m	-				1 ···	5.7 (pc/	-			
	bit 13-2)						oit 13-2)			
OS = (Exhi	ormination				Speed L	Deter	minatio	on		
OS = (Exhi	ermination				D _s = 0.	.317 (E	xhibit 13-	-12)		
OS = (Exhi Speed Det										
OS = (Exhi Speed Dete I _S = (Exib	it 13-11)					4.3 mph	(Exhibit	13-12)		
OS = (Exhi Speed Deto I _S = (Exib _R = mph (I	it 13-11) Exhibit 13-11)				S _R = 54	-		-		
OS = (Exhi Speed Det I _S = (Exib _R = mph (I ₀ = mph (I	it 13-11)				S _R = 54 S ₀ = N	/A mph	(Exhibit (Exhibit (Exhibit	13-12)		

<u> </u>		RAMP	S AND RAM			RKS	HEET			
General Info				Site Infor						
nalyst	LTN			eeway/Dir of Tr	5,					
gency or Compa	-	elson & Associat		Inction	Flyover Interchange Off-Ramp					
ate Performed		8/2018		risdiction		DOT&P				
nalysis Time Per		r 2045 AM Peak		nalysis Year		Flyover	Concept v	v/ Base Access		
roject Description	1 Richardson H	ignway IVIP 359	Grade Separated	Facility						
•		Freeway Num	ber of Lanes, N	2						
Upstream Ad	j Ramp								Downstrea	am Adj
Yes	On	Ramp Numbe		1					Ramp	
			ane Length, L _A						Yes	On
🗹 No	Off	Deceleration L	ane Length L _D	307					🗹 No	Off
		Freeway Volu	me, V _F	2237						
L _{up} =	ft	Ramp Volume	, V _R	544					L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	60.0					· -	e le /le
V _u =	veh/h		ow Speed, S _{FR}	45.0					V _D =	veh/h
onversion	to pc/h Un		110	10.0						
								6		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x ĭ _{HV} x ť _p
reeway	2237	0.94	Level	7	0	0.9	966	1.00	24	63
lamp	544	0.94	Level	7	0	0.9	966	1.00	59	99
JpStream										
ownStream										
		Merge Areas						iverge Areas		
stimation	of V ₁₂				Estimati	ion o	t v ₁₂			
	V ₁₂ = V _F	₌ (P _{FM})					V ₁₂ =	V _R + (V _F - V _R	P _{FD}	
=	(Equ	ation 13-6 or	13-7)		L _{EQ} =		(Equation 13-1	2 or 13-13)
-∝ _{=M} =		g Equation (E			P _{FD} =		-	000 using Equ		
12 =	pc/h		,		V ₁₂ =			63 pc/h		
3 or V _{av34}		(Equation 13	-14 or 13-17)		V_3 or V_{av34}			pc/h (Equatio	n 12 14 or	12 17)
			-14 01 13-17)			> 0 70			11 13-14 01	13-17)
	,700 pc/h? □Ye							Yes No		
$s v_3 \text{ or } v_{av34} > 1$.5 * V ₁₂ /2 Ye		10 10 10			•		Yes No	10.40.40	10 10
Yes,V _{12a} =	pc/n 13-19		-16, 13-18, or		If Yes,V _{12a} =	•	р 19	c/h (Equation	13-10, 13-	-18, 0f 13
apacity Cl		/			Capacit	y Che		-)		
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		2463	Exhibit 13-8	4600	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _D	1864	Exhibit 13-8	4600	No
FU					V _R		599	Exhibit 13-10		No
low Entori	ng Merge li	nfluonco A	<u>roa</u>			torin		rge Influend		NO
	Actual		Desirable	Violation?				Max Desirab		Violation
V _{R12}		Exhibit 13-8		violation.	V ₁₂	_	463	Exhibit 13-8	4400:All	No
	rvice Deteri		if not E)					terminatior		
	0.00734 v _R +		· · · · ·		î					r)
	IX.	0.0076 v ₁₂ -	0.00027 L _A					.0086 V ₁₂ - 0.0	JU9 L _D	
_R = (pc/mi	-					2.7 (pc/	-			
	it 13-2)						oit 13-2)			
DS = (Exhib	rmination				Speed D	Deteri	ninatic	n		
DS = (Exhib					D _s = 0.3	352 (E>	khibit 13-	12)		
DS = (Exhib Speed Dete					3					
DS = (Exhib peed Dete _S = (Exibit	13-11)					3.7 mph	(Exhibit	13-12)		
DS = (Exhib peed Dete _S = (Exibit _R = mph (E	: 13-11) xhibit 13-11)				S _R = 53		(Exhibit (Exhibit [·]			
DS = (Exhib) $COS = (Exhib)$	13-11)				S _R = 53 S ₀ = N/	A mph	(Exhibit (Exhibit (Exhibit	13-12)		

		RAMP	S AND RAM			RKS	HEET			
General Info				Site Infor						
nalyst	LTN			eeway/Dir of Tr			hardson Hi			
gency or Compa	-	Ison & Associat		Inction	Flyover Interchange Off-Ramp					
ate Performed		8/2018		irisdiction		DOT&P				
nalysis Time Per		r 2045 PM Peak		nalysis Year		Flyover	Concept v	v/ Base Access		
nputs	1 RICHARDSON HI	Ignway IVIP 359	Grade Separated	гасшу						
•		Freeway Num	ber of Lanes, N	2						
Upstream Adj	, Ramp	Ramp Numbe		1					Downstrea Ramp	am Adj
Yes	On	· ·		I					капр	
			ane Length, L _A						Yes	🗌 On
No No	Off	Deceleration L	ane Length L _D	307					🗹 No	Off
		Freeway Volu	me, V _F	1588						
L _{up} =	ft	Ramp Volume	, V _R	276					L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	60.0					· -	e le /le
V _u =	veh/h		ow Speed, S _{FR}	45.0					V _D =	veh/h
onversion	to pc/h Un		110	10.0						
		<u>т т</u>					<i>c</i>	(
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x t _{HV} x f _p
reeway	1588	0.94	Level	7	0	0.9	966	1.00	17	48
lamp	276	0.94	Level	7	0	0.9	966	1.00	3	04
JpStream										
ownStream										
		Merge Areas						iverge Areas		
stimation	of V ₁₂				Estimati	ion o	t v ₁₂			
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	V _R + (V _F - V _R)P _{FD}	
_{EQ} =	(Equa	ation 13-6 or	13-7)		L _{EQ} =		(Equation 13-1	2 or 13-13)
		Equation (E			P _{FD} =		-	000 using Equ		
12 =	pc/h	, (,		V ₁₂ =			748 pc/h		
₃ or V _{av34}	•	(Equation 13	-14 or 13-17)		V_3 or V_{av34}			pc/h (Equatio	n 12 14 o	12 17)
	-		-14 01 13-17)			> 0 7(11 13-14 01	13-17)
	,700 pc/h? □ Ye					• ·		Yes Vo		
$s v_3 \text{ or } v_{av34} > 1.$.5 * V ₁₂ /2 Ye		10 10 10			• •		Yes No	10.10.10	10 10
Yes,V _{12a} =	13-19		-16, 13-18, or		If Yes,V _{12a} =	=	μ 19	c/h (Equation	13-10, 13	-18, 01 13-
apacity Ch		/			Capacit	y Che		-)		
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		1748	Exhibit 13-8	4600	No
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V.	1444	Exhibit 13-8	4600	No
FO					V _R	ĸ	304	Exhibit 13-10		No
low Entori	ng Morgo li		* 00			torin				NU
IOW EIIteili	ng Merge Ir Actual		Desirable	Violation?	FIOW EII	_	Actual	r ge Influend Max Desirab		Violation
V _{R12}	/ lotual	Exhibit 13-8	Desirable	VIOICIUTE	V ₁₂	_	748	Exhibit 13-8	4400:All	No
			f 10 0 4 5							
	rvice Deterr		· · · · ·		î			termination		F)
	0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A					.0086 V ₁₂ - 0.0	009 L _D	
_R = (pc/mi/	′ln)				D _R = 16	6.5 (pc/	mi/ln)			
	it 13-2)				LOS = B	(Exhib	oit 13-2)			
	rmination				Speed L	Deteri	minatic	on		
OS = (Exhibi	mination				D _s = 0.3	325 (E)	khibit 13-	-12)		
OS = (Exhibi Speed Dete					s o.					
OS = (Exhibi Speed Dete I _S = (Exibit	13-11)					•	(Exhibit	13-12)		
OS = (Exhibi Speed Dete I _S = (Exibit _R = mph (E:	13-11) xhibit 13-11)				S _R = 54	4.1 mph	(Exhibit			
OS = (Exhibit) $Cost = (Exhibit)$ $Cost = (Exhibit)$ $Cost = Cost = C$	13-11)				S _R = 54 S ₀ = N/	4.1 mph /A mph	(Exhibit (Exhibit (Exhibit	13-12)		

	RA	MPS AND	RAMP JUN		ORKSHE	EET				
General Info				Site Infor						
Analyst Agency or Compan	LTN	lson & Associat		eeway/Dir of Tr	avel		hardson Hv r Interchanc	/y e On-Ramp		
Date Performed	•	8/2018		irisdiction		DOT&F	-	· · · · · · · · · · · · · · · · · ·		
Analysis Time Peri	od Year	2045 AM Peak	c Ar	nalysis Year		Flyove	r Concept w	/ Base Access		
Project Description	Richardson Hi	ghway MP 359	Grade Separated	Facility						
Inputs										
Upstream Adj Ram	р	Freeway Num Ramp Numbe	ber of Lanes, N r of Lanes, N	2 1					Downstre Ramp	am Adj
Yes C	Dn	1 .	ane Length, L_{A}	1000					Yes	On
☑ No □ C	Off		ane Length L _D						⊡ res	Off
		Freeway Volu	me, V _F	1693						
L _{up} = ft		Ramp Volume	e, V _R	93					L _{down} =	ft
V _u = veh/	/h		-Flow Speed, S_{FF}	60.0					V _D =	veh/h
ŭ			ow Speed, S _{FR}	45.0					D	
Conversion	to pc/h Un	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	⁼ x f _{HV} x f _p
Freeway					0	0.	.966	1.00	ſ	1864
Ramp	93	0.94	Level	7	0	0.	966	1.00		102
UpStream DownStream						_				
DownStream		Merge Areas					I D	iverge Areas		
Estimation o					Estimati	ion o	of v ₁₂			
	$V_{12} = V_{F}$	(P)						/ _R + (V _F - V _R)P	
L _{EQ} =		ation 13-6 or	13-7)		L _{EQ} =			Equation 13-		3)
P _{FM} =			ion (Exhibit 13-6)		P _{FD} =			sing Equatio		
V ₁₂ =	1864		()		V ₁₂ =			c/h		/
V_3^{12} or V_{av34}^{12}			13-14 or 13-17)		V_3^{12} or V_{av34}^{12}			c/h (Equation 1	3-14 or 13-1	7)
Is V_3 or $V_{av34} > 2,7$,			a₄ > 2,7		Yes No		/
Is V_3 or $V_{av34} > 1.5$								Yes No		
f Yes,V _{12a} =		(Equation 13	3-16, 13-18, or		If Yes,V _{12a} =		þ	c/h (Equation -19)	n 13-16, 1	3-18, or
Capacity Ch	ecks				Capacity	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Cap	acity	LOS F?
					V _F			Exhibit 13-8	3	
V _{FO}	1966	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-8	3	
10					V _R			Exhibit 13- 10	-	
Flow Enterin	<u> </u>	I I	r02			torin		ge Influen		
	Actual		Desirable	Violation?		-	Actual	Max Desi		Violation?
V _{R12}	1966	Exhibit 13-8	4600:All	No	V ₁₂	+		Exhibit 13-8		
Level of Ser	vice Deterr	nination (if not F)	•	Level of	Ser	vice De	terminatio	n (if not	F)
D _R = 5.475	+ 0.00734 v _R +	0.0078 V ₁₂ - 0.0	00627 L _A		[[D _R = 4	1.252 + 0.	0086 V ₁₂ - 0.	009 L _D	
D _R = 14.5 (pc/	ˈmi/ln)				D _R = (p	c/mi/l	n)			
_OS = B (Exhibi	it 13-2)					Exhibit	13-2)			
Speed Deter	mination				Speed D	Deter	minatio	n		
•	xibit 13-11)					xhibit 1				
-	n (Exhibit 13-11)					ph (Exh	nibit 13-12)			
IX ·	(Exhibit 13-11)					ph (Exh	nibit 13-12)			
	n (Exhibit 13-13)				S = m	ph (Exh	nibit 13-13)			
opyright © 2016 Univ	versity of Florida		HCS2010 TM	Vorsion	6.00	Gei	nerated: 12/2	28/2018 10:53		

HCS2010TM Version 6.90

		RAI		RAMP JUN		ORKSH	EET				
Genera	al Infori				Site Infor						
Analyst	-	LTN		Fr	eeway/Dir of Tr		NB R	ichardson H	wv		
Agency or	Company		son & Associa		Inction				ge On-Ramp		
Date Perfo		12/18	3/2018	Ju	irisdiction		DOT&PF				
Analysis Ti	ime Period	Year	2045 PM Peak	k Ar	nalysis Year		Flyov	er Concept v	w/ Base Access		
Project De	scription	Richardson Hig	ghway MP 359	Grade Separated	· ·		,				
Inputs										i.	
Upstream .	Adj Ramp		Freeway Num	ber of Lanes, N	2					Downstr	eam Adj
-			Ramp Numbe	r of Lanes, N	1					Ramp	
🗌 Yes	On		Acceleration L	ane Length, L _A	1000					✓ Yes	On
✓ No	Off		Deceleration I	Lane Length L _D						No	✓ Off
			Freeway Volu	me, V _F	1312						
- _{up} =	ft		Ramp Volume	e, V _R	92					L _{down} =	4500 ft
. –	veh/h		Freeway Free	-Flow Speed, S _{FF}	60.0					V _D =	283 veh/h
/ _u =	ven/n		Ramp Free-Fl	ow Speed, S _{FR}	45.0					^v D	203 Ven/11
Conve	rsion to	pc/h Und	der Base	Conditions							
(pc		V	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway	,	(Veh/hr) 1312	0.94	Level	7	0		0.966	1.00		1445
Ramp		92	0.94	Level	7	0		0.966	1.00		101
UpStream	1	52	0.54	Level	,		+	5.500	1.00		101
DownStre		283	0.94	Level	7	0		0.966	1.00		312
			Merge Areas						Diverge Areas		
Estima	tion of	v ₁₂				Estimat	ion	of v ₁₂			
		V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _F)P _{ED}	
- _{EQ} =		.= .	ation 13-6 o	r 13-7)		L _{EQ} =			(Equation 13		13)
							using Equation		-		
√ ₁₂ =		1445				V ₁₂ =			pc/h		,
/ ₃ or V _{av34}				13-14 or 13-17)	,	V_3 or V_{av34}			pc/h (Equation	13 11 or 13	17)
) pc/h? 🗌 Ye		13-14 01 13-17))		> 2		Yes No		-17)
							•••				
		V ₁₂ /2 Yes		3-16, 13-18, or					Yes No pc/h (Equatio		13 18 or
f Yes,V _{12a}	=	13-19)		5-10, 15-10, 01		If Yes,V _{12a} =	-		3-19)	лт т <u></u> -то,	15-10, 01
Capaci	ity Che	cks				Capacit	y Cl	necks			
		Actual	C	Capacity	LOS F?			Actual	Ca	pacity	LOS F?
						V _F			Exhibit 13-	-8	
V	50	1546	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-	-8	
r	FU					V _R			Exhibit 13	3-	
									10		
-low E	intering	Merge In			Violation	Flow En	<u>iteri</u>		rge Influer		1
V		Actual 1546	Max Exhibit 13-8	Desirable 4600:All	Violation? No	V ₁₂	+	Actual	Max Des Exhibit 13-8		Violation?
V _R					NU		<u> </u>	nviaa Da		n (if no	<u>+ </u>
		0.00734 v _R + 0		<u>,</u>		-			terminatic .0086 V ₁₂ - 0		(7)
			0.0070 v ₁₂ - 0.	00027 L _A					.0000 v ₁₂ - 0	.009 L _D	
	11.2 (pc/mi	-					oc/mi				
	B (Exhibit 1	,				· · ·		it 13-2)			
	peed Determination							rminatio	on		
•	0.249 (Exib	oit 13-11)						13-12)			
S _R =	55.5 mph (Exhibit 13-11)						(hibit 13-12)			
•		Exhibit 13-11)				S ₀ = m	ph (E	khibit 13-12)			
S = .	55.5 mph (Exhibit 13-13)				S = m	ph (E	khibit 13-13)			
opyright ©	2016 Univer	sitv of Florida. A	II Rights Reserv	/ed		HCS2010 [™]	Versio	on 6.90	Ge	enerated: 12	/28/2018 10:52

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Trave	SB Rich	ardson Highwav
Agency or Company	Kittelson & A	ssociates	From/To	East of L	akeview Dr Off-
Date Performed	12/18/2018	0000/0100	Jurisdiction	Ramp DOT&PF	=
					Concept w/ Base
Analysis Time Period	Year 2045 Al		Analysis Year	Access	,
	rdson Highway		de Separated Facility		
✓ Oper.(LOS)			Des.(N)	Plan 🗌	ning Data
Flow Inputs					
Volume, V	760	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade 0.00% Length	Grade n 0.00mi	
		ven/n	Up/Down %	0.00	
Calculate Flow Adjus	tmonts		Op / Dom /70	0.00	
	1.00		E _R	1.2	
f _p					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph		00.0	тірп
BFFS					
LOS and Performanc	<u>e Measures</u>	5	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$\frac{Operational(LOS)}{V} = (V \circ r DUV) / (DUE v)$	Nyf		Design LOS		
v _p = (V or DDHV) / (PHF x	^{HV} 418	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x I)$	N x f _{HV}	
x f _p)			x f _p)		pc/h/ln
S	60.0	mph	S		mph
D = v _p / S	7.0	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	A		Required Number of Lanes	N	
Glossary			Factor Location		
N - Number of lanes	<u> </u>	d			
	S - Spee		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
V - Hourly volume	D - Densi	-	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _p - Page 11-18		TRD - Page 11-1
LOS - Level of service speed	внно - Ва	se free-flow	LOS, S, FFS, v _p - Exhibits	11-2,	-
DDHV - Directional design	hour volume		11-3		
Convright © 2016 University of Flori			HCS 2010 TM Version 6.00		ed: 12/28/2018 1:09 P

HCS 2010TM Version 6.90

Generated: 12/28/2018 1:09 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	SB Rich	ardson Highwav
Agency or Company	Kittelson & A	ssociates	From/To	East of I	_akeview Dr Off-
Date Performed	12/18/2018	0000/4100	Jurisdiction	Ramp DOT&PI	=
					d Concept w/ Base
Analysis Time Period	Year 2045 P		Analysis Year	Access	,
	rdson Highwa		de Separated Facility		
✓ Oper.(LOS)			Des.(N)	Plar	ining Data
Flow Inputs					
Volume, V	1902	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Venin	Up/Down %		
Calculate Flow Adjus	tments		••••••••		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph		00.0	
BFFS		•			
LOS and Performanc	e measures	6	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x)$	Nxf		Design LOS		
$x f_p$ ($t = 0.22110$), ($t = 0.22110$)	^{HV} 1047	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		permit
	17.5	pc/mi/ln	S		mph
$D = v_p / S$	П.5 В	pc/m/m	$D = v_p / S$		pc/mi/ln
LOS	Б		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed			f Evelisited o
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	44.40	f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-11
speed	-		LOS, S, FFS, v _p - Exhibits 1	11-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid		an cod	HCS 2010 TM Version 6.90	Conorate	d [.] 12/28/2018 12.31

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:31 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	SB Rich	ardson Highway
Agency or Company	Kittelson & A	ssociates	From/To	East of A	AK Railroad Spur
Date Performed	12/18/2018		Jurisdiction	Line DOT&PI	=
Analysis Time Period	Year 2045 Al	M Peak	Analysis Year		d Concept w/ Base
Project Description Richa	rdson Highwa	y MP 359 Grad	le Separated Facility	/100000	
Oper.(LOS)	0		es.(N)	Plan	ning Data
Flow Inputs			()		J
Volume, V	940	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P_T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
			Up/Down %		
Calculate Flow Adjus					
f _p	1.00		E _R	1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.966	
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	-	~~~~	
Base free-flow Speed,	00.0		FFS	60.0	mph
BFFS		mph			
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOC)			<u>Design (N)</u>		
Operational (LOS)	NI £		Design LOS		
v _p = (V or DDHV) / (PHF x	N X I _{HV} 517	pc/h/ln	$v_{p} = (V \text{ or DDHV}) / (PHF x N)$	√x f _{HV}	
x f _p)			x f _p)		pc/h/ln
S	60.0	mph	S		mph
D = v _p / S	8.6	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	A		Required Number of Lanes	N	·
Glossary			Factor Location	, 	
N - Number of lanes	S - Spee	h			
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
-		•	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate LOS - Level of service		e-flow speed ase free-flow	f _p - Page 11-18		TRD - Page 11-11
speed	D1 0 - Da		LOS, S, FFS, v _p - Exhibits 1	1-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid		miad	HCS 2010 TM Version 6.90	0	d [.] 12/28/2018 12.32 P

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:32 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Travel	SB Rich	ardson Highway
Agency or Company	Kittelson & A	ssociates	From/To	East of A	AK Railroad Spur
Date Performed	12/18/2018		Jurisdiction	Line DOT&PI	F
Analysis Time Period	Year 2045 Pi	M Peak	Analysis Year	Diamono	d Concept w/ Base
-	ordson Hiahwa	V MP 359 Grad	le Separated Facility	Access	
✓ Oper.(LOS)	ind Soft Finghwa		es.(N)	Plan	ning Data
Flow Inputs			es.(N)		
Volume, V	2447	veh/h	Peak-Hour Factor, PHF	0.94	
AADT	2777	veh/day	%Trucks and Buses, P_T	7	
Peak-Hr Prop. of AADT, K		Vonnaay	%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
$DDHV = AADT \times K \times D$		veh/h	Grade % Length	mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
Ε _T	1.5		f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)	0.966	
Speed Inputs			Calc Speed Adj and F		
Lane Width		ft		<u> </u>	
Rt-Side Lat. Clearance		ft	£		and a la
Number of Lanes, N	2	10	f _{LW}		mph
	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	;	Design (N)		
			Design (N)		
<u> Operational (LOS)</u>			Design LOS		
v _p = (V or DDHV) / (PHF x	N x f _{HV 1.347}	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x f)$	V x f	
x f _p)		pormit	$x f_p$	HV	pc/h/ln
S	60.0	mph	S		mph
D = v _p / S	22.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	N	permini
			· ·	, IN	
Glossary		_	Factor Location		
N - Number of lanes	S - Spee		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
V - Hourly volume	D - Dens	•	E_{T} - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _p - Page 11-18		TRD - Page 11-1
LOS - Level of service	BFFS - Ba	ase free-flow	LOS, S, FFS, v _p - Exhibits 1	11-2,	
speed DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid			HCS 2010 TM Version 6.90		ed: 12/28/2018 12:32 P

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:32 PM

0		KAWF	S AND RAW	P JUNCTI		RKSH	IEET				
General Info				Site Infor		<u> </u>					
Analyst	LTN			eeway/Dir of Tr			ardson High				
gency or Compar	-	elson & Associa		Inction			-	je Off-Ramp			
Date Performed	12/1	17/2018	JL	irisdiction		DOT&PF		/ Daga Agagag			
Analysis Time Peri	iod Yea	r 2045 AM Pea	k Ar	nalysis Year		Diamono	Concept w	// Base Access			
	Richardson H	ighway MP 359	Grade Separated	Facility							
Inputs											
Upstream Adj	Ramp	1 .	ber of Lanes, N	2					Downstrea	am Adj	
Yes	On		er of Lanes, N	1					Ramp		
			Lane Length, L _A		🗆 Yes 🛛						
✓ No	Off	Deceleration	Lane Length L _D	200		🗹 No	Off				
		Freeway Volu	ıme, V _F	760							
L _{up} =	ft	Ramp Volume	e, V _R	21					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V =	veh/h	
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	ven/m	
Conversion	to pc/h Un							I			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	ΗV	f _p	v = V/PHF	x f _{HV} x f _c	
reeway	760	0.94	Level	7	0	0.9		1.00	83	37	
Ramp	21	0.94	Level	7	0	0.9		1.00		3	
UpStream		0.04	Lovoi	<u>'</u>	, v	0.0		1.00	2	0	
DownStream						1					
	-	Merge Areas		-			Div	verge Areas			
Estimation	of v ₁₂				Estimat	Estimation of v ₁₂					
	V ₁₂ = V _F (P _{FM})						V ₁₂ = \	/ _R + (V _F - V _R	P _{FD}		
- _{EQ} =	(Equ	ation 13-6 or	13-7)		L _{EQ} =		(Ed	quation 13-1	2 or 13-13)	
P _{FM} =	using	g Equation (Exhibit 13-6)		P _{FD} =						
/ ₁₂ =	pc/h				$V_{12} =$			pc/h	,	,	
V_3 or V_{av34}	pc/h	(Equation 13	-14 or 13-17)		V_3^{12} or V_{av34}^{12}			c/h (Equatio	n 13-14 or	13-17)	
Is V ₃ or V _{av34} > 2,						>270		Yes 🗹 No		10 17)	
ls V ₃ or V _{av34} > <u>1</u> , Is V ₃ or V _{av34} > 1.						• ·		Yes VNO			
			-16, 13-18, or			• •		res ⊠iNo /h (Equation	13-16 13-	.18 or 13	
f Yes,V _{12a} =	13-19		-10, 10-10, 01		If Yes,V _{12a} =	•	19)		10-10, 10-	10, 01 13	
Capacity Ch	iecks				Capacit	y Che	cks				
	Actual	(Capacity	LOS F?			Actual	-	pacity	LOS F	
					V _F		837	Exhibit 13-8	4600	No	
V _{FO}		Exhibit 13-8			V _{FO} = V _F	-V _R	814	Exhibit 13-8	4600	No	
					V _R		23	Exhibit 13-10	2100	No	
-low Enteri	ng Merge I	nfluence A	Area	-	Flow En	tering	n Diverg	e Influen	ce Area		
	Actual	Max	Desirable	Violation?		A	ctual	Max Desirab	le	Violation	
V		Exhibit 13-8			V ₁₂			Exhibit 13-8	4400:All	No	
V _{R12}	vice Deter		,					ermination	•	F)	
.evel of Ser		0.0078 V ₁₂	- 0.00627 L _A					086 V ₁₂ - 0.0	009 L _D		
D _R = 5.475 +		12			D _R = 9.1	7 (pc/m	i/ln)				
Level of Ser D _R = 5.475 +		12			R 0.	LOS = A (Exhibit 13-2)					
D _R = 5.475 + D _R = (pc/mi/	/ln)					(Exhibi	t 13-2)				
$D_R = 5.475 + D_R = (pc/mi/OS = (Exhibition)$	′ln) it 13-2)						,)			
$\frac{\text{Level of Ser}}{D_{R} = 5.475 +}$ $\frac{D_{R} = (\text{pc/mi})}{OS = (\text{Exhibit})}$ $\frac{\text{Speed Deter}}{OS = 0}$	′ln) it 13-2)				LOS = A Speed D	Detern	,				
$D_{R} = 5.475 + D_{R} = (pc/mi)$ $OS = (Exhibit)$ $OS = (Exhibit)$ $OS = (Exhibit)$ $OS = (Exhibit)$	'In) it 13-2) rmination 13-11)				LOS = A Speed L $D_s = 0.1$	Detern 300 (Ex	nination	2)			
$\frac{evel of Ser}{D_R = 5.475 +}$ $D_R = (pc/mi)$ $OS = (Exhibit)$ $\frac{Speed Dete}{D_R}$ $M_S = (Exibit)$ $M_S = mph (Exibit)$	(In) it 13-2) rmination 13-11) xhibit 13-11)				LOS = A Speed L $D_s = 0.1$ $S_R = 54$	Detern 300 (Ex 4.6 mph	nination hibit 13-1	2) 3-12)			
$\frac{\textbf{Level of Ser}}{D_{R} = 5.475 +}$ $D_{R} = (pc/mi)$ $CS = (Exhibit)$ $\frac{\textbf{Speed Dete}}{D_{R}}$ $M_{S} = (Exibit)$ $S_{R} = mph (E3)$ $S_{0} = mph (E3)$	/In) it 13-2) rmination 13-11)				LOS = A Speed L $D_s = 0.1$ $S_R = 54$ $S_0 = N/2$	Detern 300 (Ex 4.6 mph /A mph (hibit 13-1 Exhibit 1	2) 3-12) 3-12)			

HCS2010TM Version 6.90

Generated: 12/28/2018 12:15 PM

		RAMP	S AND RAM			RKS	HEET				
General Info				Site Infor							
Analyst	LTN			eeway/Dir of Tr			nardson Hig				
Agency or Compan	-	lson & Associa		Junction Diamond Interchange Off-Ramp							
Date Performed	12/1	7/2018	Ju	urisdiction	-	DOT&P	-				
Analysis Time Peric	od Year	r 2045 PM Pea	k Ai	nalysis Year	[Diamon	d Concept v	w/ Base Access	5		
	Richardson Hi	ighway MP 359	Grade Separated	Facility							
Inputs		Eroowov Nun	abor of Lance N	2							
Upstream Adj	Ramp		nber of Lanes, N	2					Downstrea Ramp	am Adj	
Yes [On		er of Lanes, N Lane Length, L _A	1		· · · · · · · · · · · · · · · · · · ·					
	- ~ "		Lane Length L _D	200		Yes	On				
✓ No	Off	Freeway Volu	D	1902					🗹 No	Off	
L _{up} =	ft	Ramp Volum		21					L _{down} =	ft	
			e-Flow Speed, S _{FF}	60.0					V _		
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversion	to pc/h Un		110								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	1902	0.94	Level	7	0	_	966	1.00	20	94	
Ramp	21	0.94	Level	7	0	0.9	966	1.00	2	3	
UpStream											
DownStream											
		Merge Areas			F ation of		verge Areas				
Estimation o	$\frac{V_{12}}{V_{12} = V_F}$				Estimati	on o					
					V _R + (V _F - V _F						
- _{EQ} =		(Equation 13-6 or 13-7) $L_{EQ} =$ (Equation 13						-			
P _{FM} =	using	Equation (Exhibit 13-6)		P _{FD} =			00 using Equ	uation (Exhi	bit 13-7)	
/ ₁₂ =	pc/h				V ₁₂ =		209	94 pc/h			
V_3 or V_{av34}	pc/h ((Equation 13	8-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$		0	oc/h (Equatio	on 13-14 or	13-17)	
Is V ₃ or V _{av34} > 2,7	'00 pc/h? 🗌 Ye	es 🗌 No			Is V ₃ or V _{av3}	₃₄ > 2,70	00 pc/h? 🔲	Yes 🗹 No			
Is V_3° or $V_{av34}^{\circ} > 1.5$								Yes 🗹 No			
f Yes,V _{12a} =			3-16, 13-18, or					h (Equation	13-16, 13-	18, or 13-	
	13-19)			If Yes,V _{12a} =		19)			
Capacity Ch	1		Conceitu	109 52	Capacity	y Che			naoity		
	Actual		Capacity	LOS F?	V _F		Actual 2094	Exhibit 13-8	pacity 3 4600	LOS F	
V _{FO}		Exhibit 13-8			$V_{FO} = V_F$	- V_	2071	Exhibit 13-8	-	No	
• FO		Exhibit 10-0			V _R	•R	2071	Exhibit 13-1		No	
-low Enterin	na Merae Ir		l Area			terin		ge Influen			
	Actual	- F	Desirable	Violation?			Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	2	094	Exhibit 13-8	4400:All	No	
Level of Ser	vice Deterr	nination ((if not F)		Level of	Serv	vice Det	erminatio	n (if not	F)	
D _R = 5.475 + 0).00734 v _R +	0.0078 V ₁₂	- 0.00627 L _A			D _R = 4	.252 + 0.0	0086 V ₁₂ - 0.	009 L _D		
0 _R = (pc/mi/l	n)				D _R = 20	.5 (pc/	mi/ln)				
.0S = (Exhibit	: 13-2)				LOS = C	(Exhib	oit 13-2)				
Speed Deter		Speed D)eteri	ninatio	n						
ℓ _S = (Exibit ′	13-11)				ľ	•	khibit 13-1	,			
S _R = mph (Ex	hibit 13-11)					.6 mph	(Exhibit 1	3-12)			
S ₀ = mph (Ex	hibit 13-11)				S ₀ = N//	A mph	(Exhibit 1	3-12)			
	hibit 13-13)				S = 54	.6 mph	(Exhibit 1	3-13)			
ovriaht © 2016 Unive		II Diahta Daaaa	1		HCS2010TM V			0	nerated: 12/28	10040 40.4	

HCS2010TM Version 6.90

Generated: 12/28/2018 12:15 PM

General Inform	ation	10 000	-	IP JUNCTI Site Infor						
Analyst	LTN			reeway/Dir of Tr			nardson High	wav		
Agency or Company		lson & Associa		unction			w Drive	lway		
Date Performed		7/2018		urisdiction		DOT&P				
Analysis Time Period							-	/ Base Access		
, 		2045 AM Pea		nalysis Year						
Project Description Ri <i> nputs</i> 	chardson Hi	ghway MP 359	Grade Separated	Facility						
Upstream Adj Ram	n	Freeway Nun	nber of Lanes, N	2					Downstrea	am Adi
Opsilean Auj Man	þ	Ramp Numbe	er of Lanes, N	1					Ramp	ani Auj
Yes C	Dn	Acceleration	Lane Length, L _A		□ Yes					
☑ No □ C)ff	Deceleration	Lane Length L _D	250						On
		Freeway Volu	ıme, V _F	860					🗹 No	Off
L _{up} = ft		Ramp Volum	e, V _R	100					L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	voh/h
V _u = veh	/h	Ramp Free-F	low Speed, S _{FR}	35.0					V _D =	veh/h
Conversion to	oc/h Un		110							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
reeway	860	0.94	Level	7	0	0.9	966	1.00	9,	47
Ramp	100	0.94	Level	7	0	0.9	966	1.00	1	10
UpStream										
DownStream								A		
Estimation of v		Merge Areas			Diverge Areas Estimation of v ₁₂					
	<u>12</u> V ₁₂ = V _F	(D)			LStiniati					
					/ _R + (V _F - V _F					
-EQ =		ation 13-6 or			L _{EQ} =	2 or 13-13				
P _{FM} =	-	Equation (Exhibit 13-6)		P _{FD} =			0 using Equ	lation (Exhi	bit 13-7)
/ ₁₂ =	pc/h				V ₁₂ =			pc/h		
V_3 or V_{av34}			8-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$			oc/h (Equatio	n 13-14 oi	13-17)
Is $V_3^{}$ or $V_{av34}^{}$ > 2,700 p					Is V ₃ or V _{av3}	₃₄ > 2,70	00 pc/h? 📃	Yes 🗹 No		
Is $V_3 \text{ or } V_{av34} > 1.5 * V$	₁₂ /2 🗌 Ye	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 1.5		Yes 🗹 No		
f Yes,V _{12a} =		• •	3-16, 13-18, or		If Yes,V _{12a} =	:		h (Equation	13-16, 13	-18, or 13
Capacity Check	13-19) ks)			Capacity		19) Proks			
	Actual	(Capacity	LOS F?		<u>, on</u>	Actual	Ca	pacity	LOS F
					V _F		947	Exhibit 13-8		No
V _{FO}		Exhibit 13-8			V _{FO} = V _F	- V _P	837	Exhibit 13-8	4600	No
					V _R		110	Exhibit 13-1	-	No
-low Entering I	Merae In	l Influence /	l Area			terin		lnfluen		
	Actual	T.	Desirable	Violation?		-	Actual	Max Desirab		Violation
V _{R12}		Exhibit 13-8			V ₁₂		947	Exhibit 13-8	4400:All	No
Level of Servic	e Detern	nination (if not F)			⁵ Serv	vice Dete	erminatio	n (if not	Ė)
D _R = 5.475 + 0.00	734 v _R +	0.0078 V ₁₂	- 0.00627 L _A		[D _R = 4	.252 + 0.0	086 V ₁₂ - 0.	009 L _D	
_R = (pc/mi/ln)					D _R = 10).1 (pc/	mi/ln)			
OS = (Exhibit 13	-2)				LOS = B (Exhibit 13-2)					
Speed Determi					Speed D		,	1		
	-						khibit 13-1			
-	1)				· · · · · · · · · · · · · · · · · · ·					
/ _S = (Exibit 13-1						2.1 mph	(Exhibit 1	3-12)		
M _S = (Exibit 13-7 B _R = mph (Exhibi	t 13-11)				S _R = 52					
/ _S = (Exibit 13-′	t 13-11) t 13-11)				S _R = 52 S ₀ = N/	A mph	(Exhibit 13 (Exhibit 13 (Exhibit 13	8-12)		

HCS2010TM Version 6.90

Generated: 12/28/2018 11:09 AM

		RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Inf	formation			Site Infor	mation						
Analyst	LTN		Fr	eeway/Dir of Tr	avel	SB Ric	hardson Hi	ghway			
Agency or Compa	any Kitte	elson & Associat	ies Ju	Junction Lakeview Drive							
Date Performed		7/2018		irisdiction		DOT&F	۶F				
Analysis Time Pe		r 2045 PM Peak		nalysis Year		Diamor	nd Concept	t 2/ Base Access			
	on Richardson H	ighway MP 359	Grade Separated	Facility							
nputs		Car and Aller	han af Lanaa Ni	0							
Upstream Ac	dj Ramp	-	ber of Lanes, N	2					Downstrea	am Adj	
Yes	On	Ramp Numbe		1					Ramp		
		Acceleration L	ane Length, L _A			Yes 🗍					
✓ No	Off	Deceleration L	ane Length L _D	250					🗹 No	Off	
_		Freeway Volu	me, V _F	1988		⊠ No					
L _{up} =	ft	Ramp Volume	e, V _R	86					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V _	I . /I.	
V _u =	veh/h		ow Speed, S _{FR}	35.0					V _D =	veh/h	
Convorsion	n to pc/h Un		IIX	00.0							
				1	r	<u> </u>					
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	1988	0.94	Level	7	0	0.	966	1.00	21	89	
Ramp	86	0.94	Level	7	0	0.	966	1.00	ç	95	
JpStream											
DownStream											
		Merge Areas				-		Diverge Areas			
stimation	of V ₁₂				Estimat	ion o	t v ₁₂				
	V ₁₂ = V _F	- (P _{FM})					V ₁₂ =	• V _R + (V _F - V _F	P _{FD}		
eq =	(Equa	ation 13-6 or	13-7)		L _{EQ} =		(Equation 13-1	2 or 13-13)	
, FM =	using	Equation (E	Exhibit 13-6)		P _{FD} =		1.	000 using Equ	ation (Exhi	bit 13-7)	
′ ₁₂ =	pc/h				V ₁₂ =			189 pc/h	(,	
V_3 or V_{av34}		(Equation 13	-14 or 13-17)		V_3^{12} or V_{av34}^{12}			pc/h (Equatio	n 13-14 oi	13-17)	
	2,700 pc/h? □ Ye					>27		Yes Vo		10 17)	
• • • • • •	1.5 * V ₁₂ /2 □ Ye							Yes VNO			
			-16, 13-18, or			• ·		I res M No oc/h (Equation)	13-16 13	-18 or 13-	
Yes,V _{12a} =	13-19		10, 10 10, 01		If Yes,V _{12a} =	=		9)	10 10, 10	10, 01 10	
Capacity C	hecks				Capacit	y Ch	ecks				
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F	
					V _F		2189	Exhibit 13-8	4600	No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	2094	Exhibit 13-8	4600	No	
					V _R		95	Exhibit 13-10	2000	No	
low Enter	ing Merge Ir	nfluence A	<i>r</i> 02			otorin		rge Influen			
	Actual		Desirable	Violation?			Actual	Max Desirab		Violation	
V _{R12}		Exhibit 13-8	2000.0.0		V ₁₂		2189	Exhibit 13-8	4400:All	No	
	ervice Deteri		if not E)					terminatio			
	+ 0.00734 v _R +							.0086 V ₁₂ - 0.0		/	
		0.0070 12	0.00027 LA					.0000 12 - 0.0	DOB LD		
0 _R = (pc/m	-					0.8 (pc	-				
	bit 13-2)						oit 13-2)				
snood Dote	ermination				Speed L						
speed Dele	+ 13_11)				D _s = 0.	.437 (E	xhibit 13-	-12)			
•	(13-11)				S _R = 52.1 mph (Exhibit 13-12)						
1 _S = (Exibi					$S_R = 52$	z. i mpn		13-12)			
M _S = (Exibi B _R = mph (E	Exhibit 13-11)						(Exhibit				
$M_{\rm S}$ = (Exibi $R_{\rm R}$ = mph (E $M_{\rm 0}$ = mph (E					S ₀ = N	/A mph		13-12)			

0			IFS AND	RAMP JUN						
	Informati				Site Infor					
Analyst		LTN			eeway/Dir of Tr		SB Richardson H			
Agency or Cor	· •	Kittels	on & Associate		Inction		Diamond Interch	ange On-Ramp		
Date Performe	ed	12/17/	2018	Ju	irisdiction		DOT&PF			
Analysis Time	Period	Year 2	2045 AM Peak	Ar	nalysis Year	E	Diamond Conce	pt w/ Base Access	6	
Proiect Descri	iption Richar	dson Hia	hwav MP 359	Grade Separated	Facility					
nputs		aconing		0.000 0000.000						
 Jpstream Adj	Ramp		Freeway Numb	per of Lanes, N	2				Downstre	am Adi
ipsueani Auj	Namp		Ramp Number	of Lanes, N	1				Ramp	ani Auj
Yes	🗌 On		Acceleration L	ane Length, L _A	1000				Yes	On
	□ o#			ane Length L _D						
✓ No	Off		Freeway Volur	5	739				🗹 No	Off
- _{up} =	ft		Ramp Volume		201				L _{down} =	ft
up				Flow Speed, S _{FF}	60.0					
/ _u =	veh/h			ow Speed, S _{FR}	45.0				V _D =	veh/h
Convorsi	ion to nc		-	Conditions	+0.0					
		V			0(T	0/ P	4	£		
(pc/h)	(Ve	eh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = v/PHF	= x f _{HV} x f _p
reeway	7:	39	0.94	Level	7	0	0.966	1.00		814
Ramp	20)1	0.94	Level	7	0	0.966	1.00		221
JpStream										
DownStream		I	lerge Areas					Diverge Areas		
Stimatio	on of v ₁₂		lerge Areus			Estimatio		Biverge Areas		
		/ - \/ (D)					V _R + (V _F - V _R		
V ₁₂ = V _F (P _{FM}) L _{FO} = (Equation 13-6 or 13-7)						I –	v ₁₂ –		. 5	2)
_{EQ} =						L _{EQ} = D -		(Equation 13-		
P _{FM} =				on (Exhibit 13-6)		P _{FD} =		using Equatio		5-7)
/ ₁₂ =		814 pc				V ₁₂ =		pc/h		
V_3 or V_{av34}				13-14 or 13-17)		V_3 or V_{av34}		pc/h (Equation 1	3-14 or 13-1	7)
	> 2,700 pc/h?							Yes No		
is V_3 or V_{av34}	> 1.5 * V ₁₂ /2	🗌 Yes	✓ No			Is V_3 or V_{av34}	₄ > 1.5 * V ₁₂ /2	Yes No		
f Yes,V _{12a} =			Equation 13	-16, 13-18, or		If Yes,V _{12a} =		pc/h (Equation	ו 13-16, 1	3-18, or
	Chaoka	13-19)						13-19)		
Capacity	Ĭ.	atual	0	anaoity		Capacity		Cor	ooit <i>i</i>	
	A	ctual		apacity	LOS F?	V _F	Actual	Exhibit 13-8	acity	LOS F?
							V	Exhibit 13-8	_	
V _{FO}	1	035	Exhibit 13-8		No	$V_{FO} = V_{F}$ -	⁻ ^v R	Exhibit 13-		
						V _R		10		
low Ent	ering Me	rge Inf	fluence A	rea		Flow Ent	tering Dive	erge Influen	ce Area	
	Ac	ctual	Max [Desirable	Violation?		Actual	Max Desi	rable	Violation?
V _{R12}	10	35	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8		
			ination (i	<i>'</i>		Level of	Service D	eterminatio	n (i <mark>f no</mark> t	F)
D _R = 5	5.475 + 0.0073	4 v _R + 0	.0078 V ₁₂ - 0.0	0627 L _A			0 _R = 4.252 + 0	0.0086 V ₁₂ - 0.	009 L _D	
_R = 7.2	(pc/mi/ln)					D _R = (po	c/mi/ln)			
OS = A (E	Exhibit 13-2)					LOS = (Ex	xhibit 13-2)			
	eterminat	tion					eterminati	on		
ppeeu De						+ ·	(hibit 13-12)			
-	12 (Fyihit 12₋1					۱ o	,			
1 _S = 0.24	42 (Exibit 13-1 3 mph (Exhibit						h (Exhibit 13-12	2)		
I _S = 0.24 R ⁼ 55.6	6 mph (Exhibit	13-11)				S _R = mp	h (Exhibit 13-12 h (Exhibit 13-12			
I _S = 0.24 _R = 55.6 ₀ = N/A	-	: 13-11) 13-11)				S _R = mp S ₀ = mp	h (Exhibit 13-12 h (Exhibit 13-12 h (Exhibit 13-13	!)		

HCS2010TM Version 6.90

General Infor			RAMP JUN	Site Infor						
nalyst	LTN		Fn	eeway/Dir of Tr		SB Richardson	Нуу			
igency or Company		son & Associat		nction		Diamond Interchange On-Ramp				
ate Performed	12/17			risdiction		DIAMONU IMERC				
					-		ept w/ Base Access	S		
nalysis Time Perio		2045 PM Peak		alysis Year			·			
roject Description	Richardson Hig	hway MP 359	Grade Separated I	Facility						
nputs			har of Lanca N	0						
lpstream Adj Ramp			ber of Lanes, N	2				Downstrea	am Adj	
Yes Or	_	Ramp Number		1				Ramp		
			ane Length, L _A	1000				🗌 Yes	On	
🛛 No 📃 Of	f	Deceleration L	ane Length L _D					🗹 No	Off	
		Freeway Volui	ne, V _F	1881						
_p = ft		Ramp Volume	, V _R	566				L _{down} =	ft	
		Freeway Free	Flow Speed, S _{FF}	60.0				V _D =	veh/h	
_u = veh/ł	1	Ramp Free-Fl	ow Speed, S _{FR}	45.0				v _D -	veh/h	
conversion t			110							
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f	f _p	v = V/PHF	x f x f	
. ,	(Veh/hr)					f _{HV}	F			
reeway	1881	0.94	Level	7	0	0.966	1.00	-	071	
Ramp	566	0.94	Level	7	0	0.966	1.00	6	23	
JpStream										
DownStream	<u> </u>	Merge Areas					Diverge Areas			
stimation of		nerge Areas			Estimati	on of v ₁₂	Diverge Areas			
	$V_{12} = V_F$									
			v ₁₂ .	= V _R + (V _F - V _R						
_{EQ} =		ation 13-6 or	,		L _{EQ} =		(Equation 13-			
FM =			ion (Exhibit 13-6)		P _{FD} =		using Equatio	n (Exhibit 13	-7)	
₁₂ =	2071 p				V ₁₂ =		pc/h			
₃ or V _{av34}			13-14 or 13-17)		V_3 or V_{av34}		pc/h (Equation 1	3-14 or 13-1	7)	
s V_3 or $V_{av34} > 2,70$					Is V_3 or V_{av3}	₄ > 2,700 pc/h?	Yes No			
s V_3 or $V_{av34} > 1.5$					Is V_3 or V_{av3}	₄ > 1.5 * V ₁₂ /2	Yes No			
Yes,V _{12a} =		Equation 13	-16, 13-18, or		If Yes,V _{12a} =		pc/h (Equation	n 13-16, 13	8-18, or	
-	13-19)				120		13-19)			
apacity Che	r		an a site		Capacity	/ Checks		a aitu		
	Actual	Ť	apacity	LOS F?	V	Actua	Exhibit 13-8	bacity	LOS F	
					V _F			_		
V _{FO}	2694	Exhibit 13-8		No	$V_{FO} = V_{F}$	- v _R	Exhibit 13-8			
					V _R		Exhibit 13- 10	-		
low Enterin	u Merae In	fluence A	rea		Flow En	terina Div	erge Influen	ce Area		
	Actual	r -	Desirable	Violation?		Actual	Max Desi		Violation	
V _{R12}	2694	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8			
evel of Serv	ice Detern	nination (i	f not F)	8	Level of	Service D	eterminatio	n (if not	F)	
D _R = 5.475 +	0.00734 v _R + 0	.0078 V ₁₂ - 0.0	0627 L _A				0.0086 V ₁₂ - 0.			
_R = 19.9 (pc/n	I C	12				c/mi/ln)	12	D D		
\	-					xhibit 13-2)				
OS = B (Exhibit					· · · · · ·		ion			
					Speed Determination					
peed Deterr						vhihit 12 10				
s = 0.289 (Ex	bit 13-11)					xhibit 13-12)	2)			
peed Detern _S = 0.289 (Exi _R = 54.8 mph	bit 13-11) (Exhibit 13-11)				S _R = mp	oh (Exhibit 13-1	-			
peed Detern _S = 0.289 (Exi _R = 54.8 mph _D = N/A mph (bit 13-11)				S _R = mp S ₀ = mp	-	2)			

HCS2010TM Version 6.90

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst	LTN		Highway/Direction of Trave	NB Rich	ardson Highwav
Agency or Company	Kittelson & A	ssociates	From/To	West of	AK Railroad Spur
Date Performed	12/18/2018	0000/0100	Jurisdiction	Line DOT&PI	F
					d Concept w/ Base
Analysis Time Period	Year 2045 A		Analysis Year	Access	
	ardson Highwa		de Separated Facility		
✓ Oper.(LOS)			Des.(N)	Plar	ning Data
Flow Inputs					
Volume, V	2237	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
		Venin	Up/Down %	1111	
Calculate Flow Adjus	tments		00,20111,0		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	2		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph	110	00.0	прп
BFFS		-			
LOS and Performanc	<u>e Measures</u>	6	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
Operational (LOS)	Nyf		Design LOS		
v _p = (V or DDHV) / (PHF x	^{N X I} HV 1232	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x I)$	N x f _{HV}	а с П а П а
x f _p)			x f _p)		pc/h/ln
S	60.0	mph	s		mph
D = v _p / S	20.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	. N	
Glossary			Factor Location	,	
N - Number of lanes	<u> </u>	ad			
	S - Spee		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
V - Hourly volume	D - Dens	•	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _p - Page 11-18		TRD - Page 11-11
LOS - Level of service speed	BFF2 - B3	ase free-flow	LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2016 University of Florid			HCS 2010 TM Version 6.90	0	ed: 12/28/2018 12:40 P

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:40 PM

	BASIC FR	EEWAY SE		Г			
General Information			Site Information				
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highway		
Agency or Company	Kittelson & A	Associates	From/To	West of AK Railroad Spur			
Date Performed	12/18/2018		Jurisdiction	Line DOT&PI	F		
Analysis Time Period	Year 2045 P	M Peak	Analysis Year		Dor&PF Diamond Concept w/ Base		
-			-	Access			
	irdson Highwa		de Separated Facility				
Oper.(LOS)			Des.(N)	Plan	ning Data		
<i>Flow Inputs</i> Volume, V	1595	veh/h	Dook Hour Faster, DHF	0.94			
AADT	1595	veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 7			
		ven/uay					
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D			%RVs, P _R General Terrain:	0 Level			
$DDHV = AADT \times K \times D$		veh/h	Grade % Length	mi			
			Up/Down %				
Calculate Flow Adjus	tments						
f _p	1.00		E _R	1.2			
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.966			
Speed Inputs			Calc Speed Adj and F				
Lane Width		ft					
Rt-Side Lat. Clearance		ft	f		mph		
Number of Lanes, N	2		f _{LW}		-		
Total Ramp Density, TRD		ramps/mi	f _{LC}		mph		
FFS (measured)	60.0	mph	TRD Adjustment		mph		
Base free-flow Speed,	00.0		FFS	60.0	mph		
BFFS		mph					
LOS and Performanc	e Measures	S	Design (N)				
			<u>Design (N)</u>				
Operational (LOS)	N1 6		Design LOS				
v _p = (V or DDHV) / (PHF x	N X ^T HV 878	pc/h/ln	$v_{p} = (V \text{ or DDHV}) / (PHF x N)$	√x f _{⊣\/}			
x f _p)			x f _p)		pc/h/ln		
S	60.0	mph	S		mph		
D = v _p / S	14.6	pc/mi/ln	$D = v_p / S$		pc/mi/ln		
LOS	В		Required Number of Lanes,	N	F -		
Glossary			Factor Location				
N - Number of lanes	S - Spee	ed					
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8		
•		e-flow speed	E _T - Exhibits 11-10, 11-11, 1	11-13	f _{LC} - Exhibit 11-9		
v _p - Flow rate LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-11		
speed	010-0		LOS, S, FFS, v _p - Exhibits 1	1-2,			
DDHV - Directional design	hour volume		11-3				
Copyright © 2016 University of Florid		anuad	HCS 2010 TM Version 6.90	Canarata	ed· 12/28/2018 12·41 P		

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:41 PM

	BASIC FR	EEWAY SE		Г			
General Information			Site Information				
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highwav		
Agency or Company	Kittelson & A	ssociates	From/To	East of Denali Park Off-			
Date Performed	12/18/2018	0000/4100	Jurisdiction	Ramp			
				DOT&PF Diamond Concept w/ Base			
Analysis Time Period	Year 2045 A		Analysis Year	Access	,		
	rdson Highwa		de Separated Facility				
✓ Oper.(LOS)			Des.(N)	Plar	ining Data		
Flow Inputs							
Volume, V	1787	veh/h	Peak-Hour Factor, PHF	0.94			
AADT		veh/day	%Trucks and Buses, P _T	7			
Peak-Hr Prop. of AADT, K			%RVs, P _R	0			
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi			
		Veniin	Up/Down %				
Calculate Flow Adjus	tments						
f _p	1.00		E _R	1.2			
	1.5						
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$				
Speed Inputs			Calc Speed Adj and F	15			
Lane Width		ft					
Rt-Side Lat. Clearance		ft	f _{LW}		mph		
Number of Lanes, N	2		f _{LC}		mph		
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph		
FFS (measured)	60.0	mph	FFS	60.0	mph		
Base free-flow Speed,		mph			r		
BFFS	- Maaaura	-					
LOS and Performanc	e measures	5	Design (N)				
Operational (LOS)			<u>Design (N)</u>				
$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{uv} ,		Design LOS				
x f _p)	^{HV} 984	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	N x f _{HV}	pc/h/ln		
S	60.0	mph	x f _p)		po/1/11		
D = v _p / S	16.4	pc/mi/ln	S		mph		
LOS	Т0.4 В	permini	D = v _p / S		pc/mi/ln		
200	Б		Required Number of Lanes	, N			
Glossary			Factor Location				
N - Number of lanes	S - Spee	ed	E _ Exhibite 11 10 11 12		f _ Evhibit 11 0		
V - Hourly volume	D - Dens	sity	E _R - Exhibits 11-10, 11-12 E Exhibits 11 10, 11, 11	11 12	f _{LW} - Exhibit 11-8 f Exhibit 11 9		
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11, 1	11-13	f _{LC} - Exhibit 11-9		
LOS - Level of service		ase free-flow	f _p - Page 11-18	4.6	TRD - Page 11-1		
speed			LOS, S, FFS, v _p - Exhibits 1	11-2,			
DDHV - Directional design	hour volume		11-3				

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:44 PM

	DASICTA	EEWAT SE	GMENTS WORKSHEE				
General Information			Site Information				
Analyst	LTN		Highway/Direction of Travel	NB Rich	ardson Highwav		
Agency or Company	Kittelson & A	ssociates	From/To	East of Denali Park Off-			
Date Performed	12/18/2018	0000/4100	Jurisdiction	Ramp DOT&PI	Ramp		
					d Concept w/ Base		
Analysis Time Period	Year 2045 P		Analysis Year	Access	•		
	rdson Highwa		de Separated Facility				
✓ Oper.(LOS)			Des.(N)	Plar	ning Data		
Flow Inputs							
Volume, V	1405	veh/h	Peak-Hour Factor, PHF	0.94			
AADT		veh/day	%Trucks and Buses, P _T	7			
Peak-Hr Prop. of AADT, K			%RVs, P _R	0			
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi			
		Veniin	Up/Down %				
Calculate Flow Adjus	tments		• • • • • • • • •				
f _p	1.00		E _R	1.2			
	1.5						
	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$				
Speed Inputs			Calc Speed Adj and F	FS			
Lane Width		ft					
Rt-Side Lat. Clearance		ft	f _{LW}		mph		
Number of Lanes, N	2		f _{LC}		mph		
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph		
FFS (measured)	60.0	mph	FFS	60.0	mph		
Base free-flow Speed,		mph			Г		
BFFS		-					
LOS and Performanc	e measures	5	Design (N)				
Operational (LOS)			<u>Design (N)</u>				
$v_p = (V \text{ or DDHV}) / (PHF x)$	N x funz		Design LOS				
x f _p)	HV 773	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	N x f _{HV}	pc/h/ln		
S	60.0	mph	x f _p)		pormit		
D = v _p / S	12.9	pc/mi/ln	S		mph		
LOS	72.9 B	permini	D = v _p / S		pc/mi/ln		
200	Б		Required Number of Lanes	, N			
Glossary			Factor Location				
N - Number of lanes	S - Spee	ed	E _ Exhibite 11 10 11 12		f _ Evhibit 11 0		
V - Hourly volume	D - Dens	sity	E _R - Exhibits 11-10, 11-12 E Exhibits 11 10, 11, 11	11 12	f _{LW} - Exhibit 11-8 f Exhibit 11.9		
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11, 1	11-13	f _{LC} - Exhibit 11-9		
LOS - Level of service		ase free-flow	f _p - Page 11-18	4.6	TRD - Page 11-1		
speed			LOS, S, FFS, v _p - Exhibits 1	11-2,			
DDHV - Directional design	hour volume		11-3				

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010TM Version 6.90 Generated: 12/28/2018 12:45 PM

• • • •		RAMP	S AND RAM			RKS	HEET				
General Informa				Site Infor							
Analyst	LTN		Fi	reeway/Dir of Tr	avel NB Richardson Highway Diamond Interchange Off-Ramp						
Agency or Company		son & Associa		unction							
Date Performed	12/17	7/2018	Ju	urisdiction							
Analysis Time Period	Year	2045 AM Pea	k A	nalysis Year		Diamon	id Concept v	w/ Base Access	i		
Project Description Ric	nardson Hig	ghway MP 359	Grade Separated	Facility							
nputs											
Upstream Adj Ramp		l '	nber of Lanes, N	2					Downstrea	am Adj	
Ramp Number of Lanes, N 1 Yes On Acceleration Lane Length, L _A									Ramp		
			Lane Length L _n	300					Ves 🗌	On	
No Of	f	Freeway Volu	0	2237					🗹 No	Off	
L _{up} = ft		Ramp Volume		544					L _{down} =	ft	
			e-Flow Speed, S _{FF}	60.0							
V _u = veh/ł	ı		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversion to p	c/h Und		110								
(nc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _n	
Freeway	2237	0.94	Level	7	0	_	966	1.00		63	
Ramp	544	0.94	Level	7	0	_	966	1.00	5		
UpStream	544	0.04	LOVOI	'		- 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DownStream											
		Merge Areas		•		-	Dir	verge Areas			
Estimation of v ₁	2				Estimat	ion o	f v ₁₂				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ = V	V _R + (V _F - V _F	_R)P _{FD}		
- _{EQ} =	(Equa	ation 13-6 or	13-7)		L _{EQ} = (Equation 13-12 or 13-13)						
P _{FM} =	using	Equation (Exhibit 13-6)		P _{FD} = 1.000 using Equation (Exhibit 13-7)						
/ ₁₂ =	pc/h				V ₁₂ = 2463 pc/h						
/ ₃ or V _{av34}	pc/h (Equation 13	-14 or 13-17)		V ₃ or V _{av34} 0 pc/h (Equation 13-14 or 13-17)						
ls V ₃ or V _{av34} > 2,700 pc			,			>2.7		Yes 🗹 No		,	
Is V_3 or $V_{av34} > 1.5 * V_{12}$						• •		Yes ⊻No			
			-16, 13-18, or					res ⊠iNo /h (Equation	13-16 13-	18 or 13	
f Yes,V _{12a} =	13-19)		-10, 13-10, 01		If Yes,V _{12a} =	:	19)		15-10, 15-	10, 01 15	
Capacity Check	s				Capacity Checks						
	Actual	(Capacity	LOS F?			Actual		pacity	LOS F	
					V _F		2463	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	1864	Exhibit 13-8		No	
					V _R		599	Exhibit 13-1		No	
Flow Entering M		Ĩ.			Flow En		<u> </u>	ge Influen		<u></u>	
	Actual	i	Desirable	Violation?	V		Actual	Max Desirab Exhibit 13-8		Violation	
V _{R12}	Dotorn	Exhibit 13-8	(if not E)				463	erminatio	4400:All	No F)	
D _R = 5.475 + 0.007			,					086 V ₁₂ - 0.0	•)	
D _R = (pc/mi/ln)	- · • R ·	12	A			2.7 (pc/		12 0.	D		
OS = (Exhibit 13-2)	2)						bit 13-2)				
Speed Determin	,				Speed D		,	<u>n</u>			
$M_{\rm S}$ = (Exibit 13-1)							xhibit 13-1				
.						•	(Exhibit 1	,			
S_R = mph (Exhibit S_0 = mph (Exhibit											
	13-11)				S ₀ = N/A mph (Exhibit 13-12)						
= mph (Exhibit	13-13				S = 53) 7 m	(Exhibit 1	2 121			

HCS2010TM Version 6.90

Generated: 12/28/2018 12:19 PM

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET				
General Info				Site Infor							
Analyst	LTN		Fr	eeway/Dir of Tr	avel	NB Rich	nardson Hi	ghway			
Agency or Compar	ny Kittel	son & Associa	tes Ju	Inction				nge Off-Ramp			
Date Performed	12/17	7/2018	Ju	urisdiction	DOT&PF Diamond Concept w/ Base Access						
Analysis Time Peri	od Year	2045 PM Peal	k Ar	nalysis Year		Diamon	d Concept	w/ Base Access	3		
	Richardson Hig	ghway MP 359	Grade Separated	Facility							
Inputs		Eroowov Num	bor of Lance N	2							
Upstream Adj Ramp Freeway Number of Lanes, N 2 Ramp Number of Lanes, N 1									Downstrea Ramp	ım Adj	
Yes	I					Yes	On				
✓ No	Off		Lane Length, L _A Lane Length L _D	300							
		Freeway Volu	ıme, V _⊏	1595					🗹 No	Off	
L _{up} =	ft	Ramp Volume		283					L _{down} =	ft	
			-Flow Speed, S _{FF}	60.0							
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversion	to pc/h Uno										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	FHV	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	1595	0.94	Level	7	0	0.9	966	1.00	17	56	
Ramp	283	0.94	Level	7	0		966	1.00	31		
UpStream											
DownStream											
		Merge Areas			Ectimot	liono		viverge Areas			
Estimation o		(-)			Estimat	1011 0					
	V ₁₂ = V _F							V _R + (V _F - V _F			
- _{EQ} =		ation 13-6 or			L _{EQ} = (Equation 13-12 or 13-13)						
P _{FM} =	using	Equation (I	Exhibit 13-6)		P _{FD} = 1.000 using Equation (Exhibit 13-7)						
/ ₁₂ =	pc/h				V ₁₂ = 1756 pc/h						
V_3 or V_{av34}	pc/h (Equation 13	-14 or 13-17)		V_3 or V_{av34}		0	pc/h (Equatio	on 13-14 or	13-17)	
Is V_3 or $V_{av34} > 2,7$	700 pc/h? 🗌 Ye	s 🗌 No			Is V_3 or V_{av}	_{/34} > 2,7(00 pc/h? 🗌	Yes 🗹 No			
Is V ₃ or V _{av34} > 1.5	5 * V ₁₂ /2 🗌 Ye	s 🗌 No			Is V ₃ or V _{av}	_{/34} > 1.5	* V ₁₂ /2	Yes 🗹 No			
f Yes,V _{12a} =	pc/h (Equation 13	-16, 13-18, or		If Yes,V _{12a} =		р	c/h (Equation	13-16, 13-	18, or 13	
Capacity Ch	13-19)						19	9)			
Sapacity Ch	Actual		Capacity	LOS F?	Capacity Checks					LOS F	
					V _F		1756	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$		1444	Exhibit 13-8	3 4600	No	
10					V _R		312	Exhibit 13-1	0 2100	No	
Flow Enterin	ng Merge In	fluence A	lrea			nterin	g Dive	ge Influen	ce Area		
	Actual		Desirable	Violation?			ctual	Max Desirat		Violation	
V _{R12}		Exhibit 13-8			V ₁₂	1	756	Exhibit 13-8	4400:All	No	
Level of Ser			,		Level of	f Serv	rice De	terminatio	n (if not l	F)	
D _R = 5.475 + 0	0.00734 v _R +	0.0078 V ₁₂ ·	- 0.00627 L _A			D _R = 4	.252 + 0	0086 V ₁₂ - 0.	009 L _D		
0 _R = (pc/mi/l	ln)				D _R = 10	6.7 (pc/	mi/ln)				
.0S = (Exhibi	t 13-2)				LOS = B	(Exhib	it 13-2)				
Speed Deter	rmination				Speed L						
ℓl _S = (Exibit	13-11)				1 -		khibit 13-				
-	(hibit 13-11)				S _R = 54	4.1 mph	(Exhibit	13-12)			
R · · ·	(hibit 13-11)				S ₀ = N	l/A mph	(Exhibit '	13-12)			
	(hibit 13-13)				S = 54	4.1 mph	(Exhibit	13-13)			
vright © 2016 Unive								,	enerated: 12/2		

Copyright $\ensuremath{\textcircled{O}}$ 2016 University of Florida, All Rights Reserved

HCS2010TM Version 6.90

Generated: 12/28/2018 1:12 PM

General Inf	ormation			Site Infor	mation					
Analyst	LTN	J	Fn	eeway/Dir of Tr		NB Richardson	Нууу			
Agency or Compa		∾ elson & Associat		Inction		hange On-Ramp				
Date Performed	-	17/2018		risdiction		DIAMONG INTERC	nange on-ramp			
							ept w/ Base Acces	s		
nalysis Time Pe	riod Yea	ar 2045 AM Peak	Ar	nalysis Year	•			<u> </u>		
	n Richardson H	lighway MP 359	Grade Separated	Facility						
nputs										
Jpstream Adj Ra	mp	1 '	ber of Lanes, N	2				Downstrea	am Adj	
		Ramp Number	Ramp Number of Lanes, N 1							
Yes	On	Acceleration L	ane Length, L _A	1200				□ Yes	On	
No 🗌	Off	Deceleration L	ane Length L _D							
	Oli	Freeway Volu	me, V _F	1693				🗹 No	Off	
_{up} = ft		Ramp Volume		94				L _{down} =	ft	
~P			Flow Speed, S _{FF}	60.0						
′ _u = ve	h/h		ow Speed, S _{FR}	45.0				V _D =	veh/h	
<u>`onvoroio</u>	to no/h llr		110	45.0						
	n to pc/h Ur									
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
reeway	1693	0.94	Level	7	0	0.966	1.00	1	864	
Ramp	94	0.94	Level	7	0	0.966	1.00	1	103	
JpStream										
DownStream										
		Merge Areas					Diverge Areas			
stimation	of v ₁₂				Estimati	on of v ₁₂				
	V ₁₂ = V	F(P _{FM})				V ₁₂ :	= V _R + (V _F - V _R)P _{FD}		
_{EQ} =	(Eq	uation 13-6 or	13-7)		L _{EQ} = (Equation 13-12 or 13-13)					
-~ =			ion (Exhibit 13-6)		P _{FD} = using Equation (Exhibit 13-7)					
12 =	1864		,		$V_{12} = pc/h$					
$^{12}_{3}$ or V _{av34}			13-14 or 13-17)		V ₃ or V _{av34}		pc/h (Equation 1	13-14 or 13-1	7)	
	2,700 pc/h? 🔲 Y					$. > 2700 \text{ pc/h}^2$	Yes No		.,	
e arei	.5 * V ₁₂ /2 Y					-				
			-16, 13-18, or				pc/h (Equatio	n 13-16 13	R-18 or	
Yes,V _{12a} =	13-19		-10, 13-10, 01		If Yes,V _{12a} =		13-19)	11 10-10, 10	5-10, 01	
Capacity C		,			Capacity	/ Checks	,			
	Actual	C	apacity	LOS F?	Actual Capacity I					
					V _F		Exhibit 13-	8		
V	1967	Exhibit 13-8		No	V _{FO} = V _F	- V _D	Exhibit 13-	8		
V_{FO}	1907			INO		<u>к</u>	Exhibit 13		+	
					V _R		10			
low Enter	ing Merge I	nfluence A	rea		Flow En	tering Div	erge Influen	ice Area		
	Actual		Desirable	Violation?		Actual	Max Des	irable	Violation	
V _{R12}	1967	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8			
	rvice Deter				Level of	Service D	eterminatio	n (if not	F)	
D _R = 5.47	5 + 0.00734 v _R +	- 0.0078 V ₁₂ - 0.0	0627 L _A			D _R = 4.252 +	0.0086 V ₁₂ - 0	.009 L _D		
_R = 13.2 (p	c/mi/ln)				D _R = (p	c/mi/ln)				
	bit 13-2)					xhibit 13-2)				
	ermination				· · · · · ·	eterminat	ion			
•					+	xhibit 13-12)				
0	Exibit 13-11)	\				oh (Exhibit 13-1	2)			
_R = 55.7 m	ph (Exhibit 13-11					oh (Exhibit 13-1				
					no = mr	m (⊢xnibit 1,3-1	Z)			
	oh (Exhibit 13-11) ph (Exhibit 13-13				,	oh (Exhibit 13-1	-			

HCS2010TM Version 6.90

0			RAMP JUN							
General In				Site Infor						
Analyst	LTI	N		eeway/Dir of Tr	avel	NB Richardso	n Hwy			
gency or Comp	any Kitt	elson & Associat	es Ju	Inction	Diamond Interchange On-Ramp					
ate Performed	12/	17/2018	Ju	irisdiction	I	DOT&PF				
nalysis Time P	eriod Yea	ar 2045 PM Peak	Ar	nalysis Year	I	Diamond Concept w/ Base Access				
,				-						
nputs		lighway wr 559	Grade Separated	Facility						
•		Freeway Num	ber of Lanes, N	2				L .		
lpstream Adj Ra	amp	Ramp Numbe		1				Downstrea Ramp	am Adj	
Yes	On									
	1011		ane Length, L _A	1200				🗌 Yes	🗌 On	
✓ No	Off	Deceleration L	ane Length L _D					🗹 No	Off	
		Freeway Volu	me, V _F	1312						
_{up} = ft		Ramp Volume	, V _R	93				L _{down} =	ft	
			-Flow Speed, S _{FF}	60.0						
' _u = ve	eh/h		ow Speed, S _{FR}	45.0				V _D =	veh/h	
onvorsio	n to pc/h Uı		111	+0.0						
				<u> </u>						
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
reeway	1312	0.94	Level	7	0	0.966	1.00	1	445	
Ramp	93	0.94	Level	7	0	0.966	1.00		102	
JpStream										
DownStream										
		Merge Areas		-			Diverge Areas			
stimation	of v ₁₂				Estimati	ion of v ₁₂				
	V ₁₀ = V	(P _{FM})				V	= V _R + (V _F - V _R)P _{ED}		
. =		uation 13-6 or	13_7)		. =	12			3)	
EQ =					$L_{EQ} = (Equation 13-12 \text{ or } 13-13)$					
FM =			ion (Exhibit 13-6)		P _{FD} = using Equation (Exhibit 13-7)					
1 ₁₂ =		pc/h			V ₁₂ =		pc/h			
$_3$ or V $_{\rm av34}$			13-14 or 13-17))	V_3 or V_{av34}		pc/h (Equation 1		7)	
s V ₃ or V _{av34} >	2,700 pc/h? 🔲 Y	es 🗹 No			Is V_3 or V_{av3}	₃₄ > 2,700 pc/h	? 🗌 Yes 🔲 No			
s V ₃ or V _{av34} >	1.5 * V ₁₂ /2 Y	es 🗹 No			Is V ₃ or V _{2V3}	_M > 1.5 * V ₁₂ /2	Yes No			
			8-16, 13-18, or				pc/h (Equatio		3-18, or	
Yes,V _{12a} =	13-1	9)			If Yes,V _{12a} =		13-19)			
Capacity C	Checks				Capacity	/ Checks				
	Actual	C	apacity	LOS F?		Acti	ual Ca	pacity	LOS F?	
					V _F		Exhibit 13-	8		
V _{FO}	1547	Exhibit 13-8		No	V _{FO} = V _F	- V _R	Exhibit 13-	8		
* FO	1047			NU			Exhibit 13	-		
					V _R		10			
low Enter	ring Merge I	nfluence A	rea		Flow En	tering Div	verge Influer	ice Area		
	Actual	Max	Desirable	Violation?		Actual	Max Des	irable	Violation	
V _{R12}	1547	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8			
evel of Se	ervice Deter	mination (if not F)		Level of	Service	Determinatio	n (if not	F)	
	75 + 0.00734 v _R -		,		1		+ 0.0086 V ₁₂ - 0		•	
i c	pc/mi/ln)	12	A			c/mi/ln)	12	U		
	-					,				
	nibit 13-2)				· · · · · ·	xhibit 13-2)				
peed Det	ermination				1 · · · · · · · · · · · · · · · · · · ·	Determina	tion			
l _s = 0.231	(Exibit 13-11)				D _s = (E:	xhibit 13-12)				
-	nph (Exhibit 13-11)			S _R = mp	oh (Exhibit 13-	12)			
	ph (Exhibit 13-11)					oh (Exhibit 13-	-			
ע אייי	,				, °	-	-			
= 55.8 n	nph (Exhibit 13-13)			S = mr	oh (Exhibit 13-	13)			

HCS2010TM Version 6.90

APPENDIX D

PAVEMENT DESIGN

Project Name: F	lichardson Highway MP 359 Rail	road Grade Sep	arated Facility		Project Number	: Z607340000/0A	24033		Analysis Date:	alysis Date: 1/26/2021				
Design Type: N	lew Design				Designer	: James McCurta				US Customary	All layer damag	ges less than 10	0%.	
					Tire Load (lbs)		Lo	ad Description:	ESAL					
Project Location:	FAIRBANKS INTL AP				4500	Load Loc (in)								
			Desi	•	Tire Press. (psi)	X:	0	13.5						
Design AADT:	26,000		Loadi	ngs	110	Y:	0	0						
Spring%:	8		489,3	339		Eval Loc (in)								
Summer%:	33		2,018	,524		X:	0	6.75						
Fall%:	17		1,039	,846		Y:	0	0						
Winter%:	42		2,569	,										
Total%:	100		6,116	,740										
		Critical Z		Asphalt			Poisson's	Tensile	Compressive	Million Cycles	Past	Future	Total	
	Layer	Coordinate (in)		Properties	Season	Modulus (Ksi)	Ratio	Micro Strain	Stress (psi)	to Failure	Damage (%)	Damage (%)	Damage (%	
			Air%:	5	Spring	350	0.30	92		39.32		1.24	1.24	
Thickness (in):	4	3.99	Asphalt%:	5.5	Summer	300	0.30	88		52.20		3.87	3.87	
Name:sp	halt Concrete (4Unmodified Asp	h	Density (pcf)	148	Fall	300	0.30	88		52.20		1.99	1.99	
Use TAI:	Yes				Winter	1200	0.30	31		501.44		0.51	0.51	
		Total Damage:		7.61	7.61									
			Air%:	6	Spring	200	0.35	166		3.43		14.25	14.25	
Thickness (in):	4	7.99	Asphalt%:	4.5	Summer	200	0.35	159		3.99		50.54	50.54	
Name:	4-5% Asphalt Treated Base		Density (pcf)	145	Fall	200	0.35	159		3.99		26.03	26.03	
Use TAI:	Yes				Winter	600	0.35	59		41.22		6.23	6.23	
										Total Damage:		97.05	97.05	
			Air%:		Spring	35	0.40		13.7	8.42		5.81	5.81	
Thickness (in):	8	8.01	Asphalt%:		Summer	40	0.40		15.1	9.52		21.21	21.21	
Name:	Subbase F P200<6%		Density:		Fall	40	0.40		15.1	9.52		10.92	10.92	
Use TAI:					Winter	90	0.40		12.2	267.16		Damage (%) 1.24 3.87 1.99 0.51 1 7.61 2 50.54 2 6.23 97.05 5.81 21.21	0.96	
										Total Damage:		38.90	38.90	
			Air%:		Spring	35	0.40		6.8	84.37		0.58	0.58	
Thickness (in):	24	16.01	Asphalt%:		Summer	40	0.40		7.2	106.11		1.90	1.90	
Name:	Select A P200<6%		Density:		Fall	40	0.40		7.2	106.11		0.98	0.98	
Use TAI:					Winter	90	0.40		6.0	2764.00		0.09	0.09	
										Total Damage:		3.55	3.55	
					Spring	10	0.40		1.2	256.83		0.19	0.19	
Thickness (in):	0	40.01			Summer	10	0.40		1.2	287.03		0.70	0.70	
Name:	Select B P200<18%				Fall	10	0.40		1.2	287.03		0.36	0.36	
					Winter	10	0.40		0.7	1827.46		0.14	0.14	
										Total Damage:		1.39	1.39	

Approved-Jeff Currey, P.E. NR Mat'ls Engr 3-4-21

Jelled Curry

APPENDIX E

PRELIMINARY PLAN AND PROFILE SHEETS

301 IBLIC ATION PORT Tue, TRANS ⁰ – F2 ЧĞ TMENT E -ASKA Ь STATE Β Ω

2301 ĘS, FACII PUBLIC 3 6 PORTATION Tue, Mar/2 OF TRANS DEPARTMENT (04\60734_F3 ASKA ٩Ľ Ъį STATE ä Ģ. G

NO. DATE

REVISION	STATE	PROJECT DESIGNATIO	N YEAR	SHEET	TOTAL
	ALASKA	0A24033/Z607340000	2020	NO. F3	SHEETS F9
				R/W	
5090+00					-
	2090+	 00			-
······································	0+00				-
	 	[]-)		-	
			PREL M	IMIN ARCI	
OUTHBOUN (3	D RI OF		2	2021	
· · ·		· · · · · · · · · · · · · · · · · · ·			480
· · ·		· · · · · · · · · · · · · · · · · · ·			475
STA. 1089+44.19 = 454.30	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · ·	470
V.P.I. STA. 1089 ELEV. = 454.30					460
.20%		· · · ·			455
		· · · ·			
	· · · · · · ·				450
	· · · · · ·				445
1080+00 1000		1091+00			

301 JBLIC ઝ VTION IRAN Ч MENT **VSKA** Ь Β e

301 JBLIC 3 PORTATION Tue, Mar/2 OF TRANS TMENT Ц ASKA ₹ Ь STATE Β<u>Υ</u>: G

2301 ĘS, PUBLIC 2 IATION TRANS ЧĞ EP : ALASKA Ъį STATE ä Ð. G

	STATE	PROJECT DESIGNATIO	ON YEAR SHEET	TOTAL SHEETS
	ALASKA	0A24033/Z607340000	NO.	F9
"NB" S N 187 E 691	NB" CONST 896.7404 277.1040		R/W	
				<u> </u>
IORTHBOUN (3	D RI OF		PRELIMIN MARC 202	Н
		-		
· · ·		· · · ·	 	
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		480
		· · · · · · · · · · · · · · · · · · ·		
	· · · · ·			480
31	· · · · · · · · · · · · · · · · · · ·			
3'-05.37 3'	· · · · · · · · · · · · · · · · · · ·			475
A: 2089+05.37 455.43'	· · · · · · · · · · · · · · · · · · ·			475
P.I. STA. 2089+05.37 EV. = 455.43'				475
···V.P.I. STA: 2089+05.37 ELEV. = 455.43'				475 470 465
ELEV. = 455.43'				475 470 465
ELEV. = 455.43'				475 470 465 460 455
ELEV. = 455.43'				475 470 465 460
ELEV. = 455.43'				475 470 465 460 455
ELEV. = 455.43'				475 470 465 460 455 450
455.43 455.43 455.4 • • • • • • • • • • • • • • • • • • •				475 470 465 460 455 450

2301 Ś PUBLIC ઝ PORTATION Tue, Mar/ OF TRANSF TMENT DEPART 04\607 ASKA Ł Ъį STATE Ä Ð G

2301 ŝ PUBLIC 8 ATION ŐR. TRANS ЧĞ TMENT Ц **A**SKA F Ъį STATE Ä Ģ. G ANS 2

REVISION	STATE	PROJECT DESIGNATIO	N YEAR	SHEET	TOTAL
	ALASKA			NO.	SHEETS
	ALASKA	0A24033/Z607340000	2020	F9	F9
END "SP "SP" STA N 18797 E 69117 5090	8.7068	UCTION 3.25		R/W	-
<u></u>		 090+00			-
					-
·····]			
	1090+00		PREL M	IMIN ARCI	
SEPARA				2021	·
(3	OF .	3)			
· · ·		· · · ·			
					480
		· · ·	•		
· · · · · · · ·	. <u></u>	· · · · · · · · · · · · · · · · · · ·	•		475
· · ·		· · ·	•	•	
	· · · ·				470
		· · · ·	•		465
		· · · · · · · · · · · · · · · · · · ·			100
· · · · ·		· · · · · ·	•	•	460
· · · ·		· · · ·	-		
					455
		· · · ·	-		
		· · · · · · · · · · · · · · · · · · ·		•	450
· · ·			-	•	
	. <u></u> .				445
				•	440
5089+00 5090)+00	5091+00	5092+00		
202100 2030	,,	5031700	5052700		

500 (206) щ

99508 ¥ 500. AVE 36 TH نب S Ж

					TOTAL
	STATE	PROJECT DESIGNATION	YEAR	SHEET NO.	SHEETS
	ALASKA	X / X	2021	Х	Х
RAL NOTES:				o.u	
Design per AASHTO Ll Edition, Seismic Design	RFD Bridg n ner AA	e Design Specification SHTO Guide Specifica	ns — 3 tions i	9th for	
.RFD Seismic Bridge L	Design, 20	011 Edition.		01	
ive Load: HL-93					
.ive Loaa: HL-95 Earth Load – 125 pci	f moist u	nit weiaht vertical ea	arth lo	ad	
· · · · · · · · · · · · · · · · · · ·					

APPENDIX F

PRELIMINARY BRIDGE PLANS

	STATE	PROJECT DESIGNATION	YEAR	SHEET NO,	TOTAL SHEETS
	ALASKA	Z607340000	2020	N1	TtlShts
40'-6"				A	
C Richardson Highway SR					

BRIDGE DRAWING INDEX	
TITLE	DWG. NO.
RAL LAYOUT	I
PLAN	2
NING WALL LAYOUT	3
NING WALL DETAILS	4
MENT I	5
MENT 2	6
MENT DETAILS	7
VALLS	8
ING PLAN AND TYPICAL SECTION	9
RS	10
R DETAILS	11
OACH SLABS	12
RETE BRIDGE BARRIER	13
OAD PROTECTION FENCE	14
BEAM TRANSITION	15
OF TEST BORINGS	16-

907-465-2975

(

	STATE	PROJECT DESIGNATION	YEAR	SHEET NO.	TOTAL SHEETS
	ALASKA	Z607340000	2020	N2	TtlShts
		GENERAL NOTES			
		RFD Bridge Design Specifications, 20 rim specifications.	020 Edi	ition, w	ith
		esign per AASHTO Guide Specificatic sign, 2011 with latest interim revisio		LRFD S	eismic
	HL-93				
	Includes 5	50 psf for all wearing surfaces.			
	Ss S1 Site Class Liquefactic	= 0.21	vears.		
	ASTM A97	6, Grade 60, Fy = 60,000 psi 0 Headed bars, Class HA. forcement evenly unless otherwise ,	noted.		
CRE TE:	See Girder	- Dwgs.			
	Class A Co	oncrete unless otherwise noted, f'c	= 4,00	10 psi	
	Galvanize :	9, Grade 36T3, Fy = 36,000 psi structural steel in accordance with ed otherwise.	AASHTO	O M111	

	FOOTING PRESSURE TABLE							
	STRENGTH I FACTORED LOAD (KSF)	NOMINAL BEARING RESISTANCE (KSF)	BEARING RESISTANCE FACTOR, ϕ					
1			0.45					
2			0.45					

ABBREVIATIONS:

= each way	MSE	= mechanically stabilized earth
= exterior	n.f.	= near face
= fixed	No.	= number
= front/air face	0. <i>C</i> .	= on center
= specified concrete	0.H.W.	
compressive strength	DE DE	— = overhead electrical line
= specified concrete	pcf	= pounds per cubic foot
compressive strength at	psf	= pounds per square foot
release	psi	= pounds per square inch
= feet	R	= radius
= vield stress	R.O.W.	= right of way
= galvanize	RT.	= right
= high strength	Rd.	= road
= high var	spcs.	= space, spaces
= internal diameter	Sta.	= station
= interior	SF	= square feet
= joint	SY	= square yard
= kips	Std.	= standard
= 1000 pounds per square f	Symm.	= symmetric
= 1000 pounds per square in		- = underground telephone line
'= rooo pounds per square " 'b = pounds	Typ.	= typical
= linear foot	ÛΤ	= últrasonic testing
= lump sum	V.P.C.	= point of vertical curve
= left	V.P.I.	= point of vertical intersection
	V.P.T.	= point of vertical tangent
= maximum	w/	= with
= minimum	"/	·····

RICHARDSON HIGHWAY OVERHEAD MP 359 SOUTHBOUND

RICHARDSON HIGHWAY

SITE PLAN

BRIDGE DRAWING INDEX	
TITLE	DWG. NO.
GENERAL LAYOUT	
SITE PLAN	2
ABUTMENT I	3
ABUTMENT 2	4
ABUTMENT DETAILS	5
WINGWALLS	6
FRAMING PLAN AND TYPICAL SECTION	7
GIRDERS	8
GIRDER DETAILS	9
APPROACH SLABS	10
CONCRETE BRIDGE BARRIER	II
RAILROAD PROTECTION FENCE	12
THRIE BEAM TRANSITION	13
LOG OF TEST BORINGS	4-

ITEM NO.	ITEM	PAY UNIT	ESTIMATING UNIT	SUBST.	SUPERST.	TOTAL QUANTITY
205.0006.0000	Structural Fill	CY	СҮ	651		651
501.0001.0000	Class A Concrete	LS	CY	132.0	31.4	163.4
501.0007.0000	Precast Concrete Member, 81'-6" Decked Bulb-Tee	EA	EA		7	7
503.0001.0000	Reinforcing Steel	LS	LBS	17,160		17,160
503.0002.0000	Epoxy-Coated Reinforcing Steel	LS	LBS		4,030	4,030
507.0002.0000	Pedestrian Railing Railroad Protection Fence	LF	LF		123.0	123.0
507.0004.0000	Concrete Bridge Barrier	LF	LF		123.0	123.0
507.0004.0000	Concrete Bridge Barrier Railroad Protection Fence	LF	LF		123.0	123.0
508.0001.0000	Waterproofing Membrane, Spray-Applied	LS	SF		3,964	3,964
606.0016.0000	Transition Rail	EA	EA		4	4
tem numbers a vantity of the ,	re for reference only. Quantities shown are not necessarily particular item.	r the pay qu	vantities nor the to	otal		

			ABBRE VIA HUNS:		
Ç	= centerline	e. f.	= each face	min.	= minimum
E R	= p/ate	С . W.	= each way	MSE	= mechanically stabilized earth
ā.	= and	Ext.	= exterior	n.f.	= near face
0	= at	F	= fixed	No.	= number
ø	= diameter	f. f.	= front/air face	0.C.	= on center
\pm	= approximate	fc	= specified concrete	0.H.W.	= ordinary high water
Abut.	= abutment	, .	compressive strength	pcf	= pounds per cubic foot
Approx.	= approximate	f'ci	= specified concrete	psf	= pounds per square foot
Á.R.R.C.	= Álaska rail road company	, 0,	compressive strength at	psi	= pounds per square inch
b. f.	= back/dirt face		release	R	= radius
bot.	= bottom	Ft.	= feet	R.O.W.	= right of way
Br.	= bridge	Fy	= vield stress	RT.	= right
btwn.	= between	Glav.	= aalvanize	Rd.	= road
Brg.	= bearings	H.S.	= high strength	spcs.	= space, spaces
C. Ğ.	= center of gravity	Hwy.	= highway	Sta.	= station
C.I.P.	= cast in place	ID	= internal diameter	SF	= square feet
CJP	= complete joint penetration	Int.	= interior	SY	= square yard
Clr.	= clear, clearance	Jt.	= joint	Std.	= standard
CMP	= corrugated metal pipe	K	= kips	Symm.	= symmetric
CY	= cubic yard	ksf	= 1000 pounds per square foot	Тур.	= typical
Dia.	= diameter	ksi	= 1000 pounds per square inch	UT	= ultrasonic testing
Dwg.	= drawing	LBS or i	b = pounds	V.P.C.	= point of vertical curve
E	= expansion	LF	= linear foot	V.P.I.	= point of vertical intersection
(E)	= existing	LS	= lump sum	V.P.T.	= point of vertical tangent
EA	= each	L T.	= left	w/	= with
Elev.	= elevation	max.	= maximum		
		DDCO	N HIGHWAY OVER		
		UD201	N HIGHWAI UVER	псаl	

\2367-	DESIGNED BY:			Checker	FOUNDATIONS REVIEWED BY:	Engineer	STATE OF ALASKA DEPARTMENT OF TRANSPORTATION	RICHARDSON MP 35
Rich 35	DRAWN BY:	Drafter	CHECKED:	Designer	PRELIMINARY PLA	١N	AND PUBLIC FACILITIES BRIDGE SECTION 3132 Channel Drive	RICHA
R:\cad\	QUANTITIES BY:	Designer	CHECKED:	Checker		414	Juneau, Alaska 99801 907-465-2975	S

STATE PROJECT DESIGNATION TEAR NO. SHEETS				·		T
GENERAL NOTES AASHTO LRFD Bridge Design Specifications, 2020 Edition, with latest interim specifications. Seismic design per AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011 with latest interim revisions.		STATE	PROJECT DESIGNATION	YEAR	SHEET NO.	TOTAL SHEETS
AASHTO LRFD Bridge Design Specifications, 2020 Edition, with latest interim specifications. Seismic design per AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011 with latest interim revisions. 		ALASKA	Z607340000	2020	N2	TtlShts
latest interim specifications. Seismic design per AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011 with latest interim revisions. 			GENERAL NOTES			
Bridge Design, 2011 with latest interim revisions. 				020 Edi	ition, w	ith
Includes 50 psf for all wearing surfaces. RS:PGA = 0.28 Ss = 0.65 St = 0.21 Site Class = C Liquefaction Potential = Low AASHTO 7% probability of exceedance in 75 years. ASTM A706, Grade 60, Fy = 60,000 psi ASTM A970 Headed bars, Class HA. Space reinforcement evenly unless otherwise noted. RETE:See Girder Dwgs. Class A Concrete unless otherwise noted, f'c = 4,000 psi Galvanize structural steel in accordance with AASHTO M111					LRFD S	Seismic
RS:PGA = 0.28 Ss = 0.65 Si = 0.21 Site Class = C Liquefaction Potential = Low AASHTO 7% probability of exceedance in 75 years. ASTM A706, Grade 60, Fy = 60,000 psi ASTM A970 Headed bars, Class HA. Space reinforcement evenly unless otherwise noted. RETE:See Girder Dwgs. Class A Concrete unless otherwise noted, f'c = 4,000 psi Galvanize structural steel in accordance with AASHTO M111		HL-93				
Ss = 0.65 Si = 0.21 Site Class = C Liquefaction Potential = Low AASHTO 7% probability of exceedance in 75 years. ASTM A706, Grade 60, Fy = 60,000 psi ASTM A970 Headed bars, Class HA. Space reinforcement evenly unless otherwise noted. RETE:See Girder Dwgs. Class A Concrete unless otherwise noted, f'c = 4,000 psi 		Includes 5	50 psf for all wearing surfaces.			
ASTM A970 Headed bars, Class HA. Space reinforcement evenly unless otherwise noted. RETE:See Girder Dwgs. Class A Concrete unless otherwise noted, f'c = 4,000 psi ASTM A709, Grade 36T3, Fy = 36,000 psi Galvanize structural steel in accordance with AASHTO M111		Ss S1 Site Class Liquefactic	= 0.65 = 0.21 = C on Potential = Low	vears.		
Class A Concrete unless otherwise noted, f'c = 4,000 psi ASTM A709, Grade 36T3, Fy = 36,000 psi Galvanize structural steel in accordance with AASHTO M111		ASTM A97	O Headed bars, Class HA.	noted.		
ASTM A709, Grade 36T3, Fy = 36,000 psi Galvanize structural steel in accordance with AASHTO M111	CRE TE:	See Girder	- Dwgs.			
Galvanize structural steel in accordance with AASHTO M111		Class A Co	oncrete unless otherwise noted, f'c	= 4,00	10 psi	
		Galvanize .	structural steel in accordance with	AASHTO	O M111	

	FOOTING PR	ESSURE TABLE	
	STRENGTH I FACTORED LOAD (KSF)	NOMINAL BEARING RESISTANCE (KSF)	BEARING RESISTANCE FACTOR, ϕ
1			0.45
2			0.45

ABBREVIATIONS:

N HIGHWAY OVERHEAD 59 NORTHBOUND

ARDSON HIGHWAY

SITE PLAN

APPENDIX G

UTILITY CONFLICT LIST AND CROSS SECTIONS

FR STA	ΤΟ STA	OFF	LENGTH (FT)	UTILITY	DESCRIPTION	CONFLICT	ADJ/REL/SAL	NOTES
1064+05		RT		ARRC	Railroad advanced warning signal	Railroad to be grade separated. Signal no longer required.	Salvage.	
064+05		LT		ARRC	Railroad advanced warning signal	Railroad to be grade separated. Signal no longer required.	Salvage.	
.068+58		RT		ARRC	Railroad signal/gate	Railroad to be grade separated. Signal no longer required.	Salvage.	
1068+64		LT		ARRC	Railroad signal/gate	Railroad to be grade separated. Signal no longer required.	Salvage.	
2068+50		RT		ARRC	Railroad signal/gate	Railroad to be grade separated. Signal no longer required.	Salvage.	
2068+53		LT		ARRC	Railroad signal/gate	Railroad to be grade separated. Signal no longer required.	Salvage.	
2073+15		RT		ARRC	Railroad advanced warning signal	Railroad to be grade separated. Signal no longer required.	Salvage.	
2073+15		LT		ARRC	Railroad advanced warning signal	Railroad to be grade separated. Signal no longer required.	Salvage.	
.068+15	1069+98	RT	183	AC	Underground comm	Comm is adjacent to grade separation. Possible conflicts with roadway slopes.	Possible relocation.	
.061+21	1078+93	RT	1772	GVEA	Overhead electric	Overhead electric lines runs parallel on south side of roadway. Several pole conflicts with roadway slopes.	Possible relocation/adjust.	
071+08	1071+44	LT/RT	244	GVEA	Overhead electric	Overhead electric line crosses the roadway near the railroad.	Relocate/adjust.	

UTILITY CONFLICT TABLE

1 of 1

															:	
														: : · · · · :	• • • • •	
			:											:		
														: :	:	
														:		
														: 		
														: :		
					• • • • • • • •					• • • • • • • •						
			· · · · · · ·											· · · · · ·		
				470										::		
				:										· · ·		
•		• • • • •	• • • • •	465	• • • • •					• • • • •			• • • • •			
				460				••••								
				455										· · · · · ·		
•		· · · · · ·	• • • • • • •	450	• • • • • •					• • • • • •			• • • • • • •	:	•••••	
				445										: : · · · · · :		
														· · · · · ·		
	220	K	240	740				·								
•														· · · · · ·	•••••	
														· · · · · ·		
		•	•	170	•					•			•			
		• • • • • • • •	• • • • • • • •	470						• • • • • • • •			• • • • • • • •	· · · · · · · ·		
			· · · · · · ·	465												
				460										: :		
				:										· · ·		
•		• • • • • • • •	• • • • • •	455	• • • • • • •					• • • • • • •			• • • • • • •	:	•••••	
				450										: : · · · · :	• • • • •	
				445										· · · · · ·		
		•	•	:												
•	220	 K	240	440										· · · · · · ·	•••••	
														· · · · · ·		
		:	:													
				470							 			:	· · · · · ·	
				465										:		
E				:	:									: :		
				460												
				455				• • • • •			· · · · · ·			· · · · · ·		
				450										 		
				:			· · ·									
				445	:									· · · · · · ·		
	220	: K	240	440				••••			· · · · · ·					
														· · ·		
•		• • • • • • • •	• • • • • • • •	· · · · · · ·	• • • • • • • •					• • • • • • • •	· · · · · · ·			· · · · · · ·		
•				470				• • • •			· · · · · ·			· · · · · · ·	••••	
				465												
c	O HE	•	•	:	:									· · ·	:	
•		• • • • • • • •	• • • • • • • •	460	• • • • • • • •					• • • • • • • •			• • • • • • • •	· · · · · · ·		••••
				455										 	• • • • •	
				450							· · · · · ·			· · · · · ·		
				: :	:		· · ·								:	
•			• • • • •	445												• • • •
	220	: r	240	440		·		1					: 	: 	: · то	
	ZZU	n 	.∠4U	· · · · · ·			LINE		PRC	JECT	NU	MBEF	2	SHEET NO.	SH)TAL EETS
						,	'NB"		0A2-	4033/	Z6073	40000	Ī		_	41
															1	

÷																
• • •	•••					· · · · · ·			· · · · · ·	· · · · · ·						
						· · · · ·			· · · · ·	· · · · ·	· · · · · ·					
÷										· · ·	· · ·			· · ·		
:		• • • • • • • •	• • • • • • • •		• • • • • • • •	• • • • • •			• • • • • •	· · · · · · · ·	· · · · · · ·	· · · · · ·				
÷					• • • • • •	· · · · · ·			· · · · · ·	· · · · · ·	· · · · · ·			· · · · · · · · ·	••••	
											· · · · · · ·					
						· · · · · ·			· · · · · ·		· · · · · ·			· · · · · ·		
		•		470												
:		• • • • • • • •		470					•				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
÷				465							· · · · · ·					
R	ow			460							· · · · · ·					
				455							· · · · · ·					
÷				450										· · ·		
-				•	•										:	
	220	 (240	445												
• • •						· · · · · ·			· · · · · ·	 						
											· · ·			· · ·		
	• • •	••••		470	• • • • •	• • • • •			• • • • • •				· · · · · ·			
÷				465		· · · · · ·			· · · · · ·	· · · · · ·				· · · · · ·		
	RO	W		460						· · · · · ·				· · · · · ·		
				455										· · · · ·		
÷				:						· · ·	· · ·			· · ·		
		-		450	•				•				· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	220	: K	240	445		· · · · · ·			· · · · · ·	· · · · · · ·	· · · · · ·			· · · · · · ·	· · · · · ·	
• • •											· · · · · ·	 		· · · · · · ·		
											· · · · · ·					
÷										 				· · ·		
	• • •	• • • • • • •	• • • • • • • •	470		•			• • • • •	· · · · · ·			• • • • • • •			
• : •	• • •			465		· · · · · ·			· · · · · ·	· · · · · ·	· · · · · ·			· · · · · · ·		
. <u>.</u> .	• • •	ROW		460						· · · · · ·	· · · · · ·			· · · · · ·		
		: 		455		· · · · · ·			· · · · · ·		· · · · · ·					
÷				:	:	•			•	· · ·	· · ·		•	· · ·		
-				450												
	220	 C	240	445							· · · · · ·		· · · · · ·			
				470												
÷		•		:		•					· · ·		•	· · ·		
: : :		• • • • • • • •	• • • • • • • •	465												
÷	• • •			460		· · · · · ·			· · · · · ·	· · · · · ·	· · · · · ·			· · · · · ·	• • • • • •	
				455							· · · · · ·			· · · · · ·		
				450		· · · · ·			· · · · ·		· · · · · ·			· · · · · ·		
· · ·						· · ·			· · ·	· · ·	· · ·			· · ·		
: : :	•••	• • • • • • • •		445	•								· · · · · ·			
	 220	ί Κ	240	440			LINE		PRC		I NUI	MREF	2	SHEE NO.	г _ тс	TAL EETS
						· 1			11/0	ハーレー	UV/I	NUCL	N	NO	I C L I	FFTS
						: . 	'NB"	+			Z6073-			NU.		41

	450 240	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -						
1 .			: :	1	: :	: :	::	:
	45	1 I I						
ROW	46	1						
	47(46	1		· · · · · · · · · · · · · · · · · · ·				
							· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
220	240							
	450 240	- P						
	455 450	1 I I		· · · · · · · · · · · · · · · · · · ·				
w	460	1. I.					· · · · · · · · · · · · · · · · · · ·	
	465	5						
	47(5						
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
220	240 445	5		· · · · · · · · · · · · · · · · · · ·				
-	450					· · · · · · · · · · · · · · · · · · ·		
	45		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	460	1 I I						
	47(46			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
220	∠40	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
000	450 240							
· · · · · · · · · · · · · · · · · · ·	455 450	.: :					· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	460	1 I I				· · · · · · · · · · · · · · · · · · ·		
	46	1 I I				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	470) 					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

															٦
								 						· · · ·	
								 						.	
			•										· · ·	:	
	• • • • • • • •	• • • • • •			• • • • • • • •			 • • • • • • • •				• • • • • • • •			
•								 						· · · · : · ·	• •
		•											· · ·	÷	
•	••••	• • • • • • •	• • • • •		••••			 • • • • • • • •				• • • • • • • •		· · · · · · · · · · · · · · · · · · ·	• •
				470				 						<u>.</u>	• •
				465				 							
			•	460	:								 	:	
				:	:									:	
•				455				 						· · · · . :	• •
				450				 					· · · · ·	· · · ·	
				445				 					· · · · · ·		
	220	Ú Í	240	445		· · ·				· · ·			· · ·	:	
		••••						 						· · · · · · · · · · · · · · · · · · ·	•••
				· · · · · ·		· · · · · ·		 		· · · · · ·			· · · · · ·	· · · · : :	•••
														· · · ·	
				470				 							
		•											· ·	÷	
				465				 							• •
				460				 						· · · ·	
				455				 					· · · · · ·		
				:									· · ·	:	
				450	•									:	
•	220	 K	240	445				 						· · · · . :	• •
								 					· · · · · ·	· · · ·	
								 						.	
														:	
														÷	
•				470				 						· · · · i · · ·	• •
				465				 						• • • • • • • •	
				460				 							
				455										;	
				:										÷	
•				450	•			 						•••••	• •
	220	: (240	445				 						· · · · : : · ·	
•		• • • • •						 							•••
				470				 						· · · · : :	
				465				 						· · · · · ·	
				460											
				:											
•		• • • • •		455				 							•••
				450				 					· · · · ·	· · · · · · · · · · · · · · · · · · ·	
				445								:			
	220	l 	240				LINE	PRC	JECT	NU	MBEF	R	SHEET NO.	TOTA SHEE	NL TS
		•		· · ·		. ,	'NB"	0A2	4033/	Z6073	40000			- 41	
														-	_

•					 		 						•••••	
												· · ·		
	• • • • • • • •	• • • • • •	• • • • • • • •		 		 • • • • • • • •				• • • • • • • •			
•					 		 						•••••	
		•	•									· · ·	:	
•	••••	• • • • • • •	••••		 		 • • • • • • • •				• • • • • • • •		•••••	
•				470	 		 							
				465	 		 							
				460								 	:	
				:									:	
•				455	 		 						· · · · . :	
•				450	 		 						•••••	
			:	445	 		 					: 		
	220	Ú Í	240	445	· · ·				· · ·			· · ·	:	
•	• • • • • • • •	• • • • • • • •	• • • • • • • •		 		 • • • • • • • •					· · · · · · ·		••••
•					 		 							
•							 							
				470]
		•	•									· ·	:	
•				465	 		 							
•				460	 		 						· · · · .	
				455	 		 					· · · · · ·		
				:								· · ·		
				450									:	
•	220	 K	240	445	 		 						· · · · · .	
•					 		 						· · · ·	
													;	
•				470	 		 							
•				465	 		 						• • • • • • •	
				460	 									
				455										
				:	 		 							
•		• • • • •	· · · · · ·	450			 						· · · · · · · · · · · · · · · · · · ·	••••
•	220	: K	: :24∩	445	 		 							••••
]
•		• • • • • • • •	• • • • • • • •		 		 							••••
•				470	 		 						••••	
•				465			 						· · · · · ·	
				460										
				:										
•		• • • • •	· · · · · ·	455	 		 						•••••	••••
•				450	 		 					· · · · ·		
				445							:			
	220	l 	240			LINE	PRC	JECT	NU	MBEF	R	SHEET NO.	TOT/ SHEE	AL TS
		•	•	· · ·	. ,	'NB"	0A2	4033/	Z6073	40000			- 4'	1

					:								:		
. <u>.</u>															
			470												
:	:		465												
-	•	•	: :												
• • • • • • •		• • • • • •	460		• • • • • •		• • • • • • • •	· · · · · · · ·							
	: : :	· · · · · ·	455		· · · · · ·										
• • • • • •			450										: : · · · · :	• • • •	
			445												
220) 	240													
	•				•								· · ·		
· · · · · · · ·	•••••	• • • • • •		• • • • • • • •	• • • • • •		• • • • • • • •								
• • • • • • •			470		· · · · · ·								· · · · · · · · · · · · · · · · · · ·		
• • • • • • •			465		· · · · · ·										
	: : :		460		· · · · · ·								· · · · · ·		
	•		455												
	· · · · · · · · · · · · · · · · · · ·		450		• • • • • •		• • • • • • • •	• • • • • • • •	• • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •			
220	:):	240	445		· · · · · ·								: : : :		
					· · · · · ·										
			470												
-															
			465												
• • • • • • •	: : :	· · · · · ·	460		· · · · · ·									••••	
• • • • • •			455										: 		
	:	· · · · · ·	450		· · · · · ·										
			:												
220)	240	445												
		• • • • •			• • • • • •		• • • • • • • •								
• • • • • •	: :	· · · · · ·			· · · · · ·										
• • • • • •			470										· · · · · · ·		
			465												
	:		460	:											
			: :	:											
:	:		455	:	•										
	: : :	· · · · · · ·	450		•								· · · · · · ·		
220	:):	240	445		· · · · · · ·										
	: :		· · · ·		· · · · ·								· · · · · ·		
	•		· · ·												
													· · · · · · · ·		
• • • • • • •	:	:	470				• • • • • • • •		• • • • • • • •						
• : • • • •	:	· · · · · ·	465		· · · · · ·										
• • • • • •			460										· · · · · · · ·		
	: 		455		· · · · · ·								· · · · · · ·		
			450	:											
	:		:												
220)	240	445			LINE		PRC	JECT	NU	MBEF	2	SHEET NO.	T T ער	DTAL EETS
• • • • • •	· · · · · ·				: . 	'NB"				Z6073					41
	:				:			UNZ							1.1

													· · ·								.
										· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·							
	475														· · ·		· · · · · · · · · · · · · · · · · · ·	· · ·			
	: : :																· · · · · · ·				
	470	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			1		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
	465		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·									~	O	D HE			• • • • • • •
	460	· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ROW	/			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·			· · · · · · · · · · · · · · · · · · ·	ROW	· · · ·	
	455	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·															
	450						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		· · ·		\mathbf{i}				
	445	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
	440 220	200	180	160	140	120	100	80	60	40	20 0 20	40	60	80	100	120	140	160	180	200	22
	220	200		100		120					· · · · · · · · · · · · · · · · · · ·									200	
		· · · · · · · · · · · · · · · · · · ·									2060+75					· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·	· · · ·		· · · · · · · · · · · · · · · · · · ·	
	475	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · ·		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · ·			
	470				· · ·				• • • •												
	465				· · · · · · · · · · · · · · · · · · ·				/	1				· · · · · ·				<u>_</u>	· · · · · · · · · · · · · · · · · · ·		
	460				· ·			DOW	,							~	Q	HE	DOW		÷
								ROW								\mathbf{X}			ROW		
	455	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·			
:	450	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·····													
: :	445				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			Ģ	<u>'</u>						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				: : :
	440 220	200	180	160	140	120	100	80	60	40	20 0 20	40	60	80	100	120	140	160	180	200	22
										· · · ·	2060+50					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·		• • • • •
	· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·	2000730					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				: :
										· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
	475															· · · · · · · · · · · · · · · · · · ·					
	470	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·													· · · · ·			
	465								1							· · · · · · · · · · · · · · · · · · ·					
	460							ROW	,							~	Q	ΗE	ROW		
: :	455				· · ·																
	450											~~~~									
	450							÷								`					
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	440 220	200	180	160	140	120	100	80	60	40	20 0 20	40	60	80	100	120	140	160	180	200	22
											2060+25					· · · · · · · · · · · · · · · · · · ·					
• • • • •	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •						· · · · · ·		· · · · · · · · · · · · · · · · · · ·				:
			· · · · · · · · · · · · · · · · · · ·				· · · ·			· · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · ·		· : · · ·
	470	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · ·
	465				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · ·				· · · · · · · · · · · · · · · · · · ·					· : · · ·
	460	· · · · · · · · · · · · · · · · · · ·			· · · ·			ROW	,							\mathbf{x}	QI	nc	ROW		
	455		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·				
	450		· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		$\sim 10^{-10}$	<u> </u>				
	: : :															`					
	445 ₂₂₀	200	180	160	140	120	100	80	60	40	20 0 20	40	60	80	100	120	140	160	180	200	22
											2060+00										

																:
•															• • • •	: :
				475												
				470												
				:			· · ·				· · ·			· · ·		:
				465		• • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •				· · · · · · ·		
•				460										· · · · · · ·		: : :
•				455												
				450												
				445												:
				•			· · ·				· · ·			· · ·		:
	220	 (240	440	· · · · · ·	• • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •				· · · · · · · ·		
•														· · · · · · ·		: : :
•																
				475												:
				:										· · ·		
		• • • • • • • •	• • • • • • • •	470		• • • • • •		• • • • • • • •	• • • • • • • •	• • • • • •						· · · · · ·
•				465												
•				460										· · · · · ·		
				455			· · · · · ·							· · · · · ·		
				450												
				:		•				•						
•		• • • • • • • •	• • • • • • • •	445		• • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • •				· · · · · · ·		
•	220	: (240	440	· · · · ·											:
•														· · · · · · ·		:
				· · · · · ·		: : :	· · · · · ·			: : :	· · · · · ·			· · · · · ·		: :
						•				•						
•		• • • • • • • •	• • • • • • • •	475	• • • • • •	• • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • •						
•				470	· · · · · ·											:
•				465			· · · · ·				· · · · ·			· · · · · ·		
				460			· · · · ·				· · · · ·			· · · · · ·		
				455										· · · · · ·		
				:												
•		• • • • • • • •	• • • • • • • •	450		• • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •						
•				445			· · · · · ·				· · · · · ·			· · · · · ·		: : :
	220	: (240	440			· · · · ·				· · · · ·			· · · · · ·		
			2 70	· · · · · ·			· · · · · ·				· · · · · ·			· · · · · ·		
																:
•					· · · · · ·	• • • • • • • •				• • • • • • • •						· · · · · ·
•				470			· · · · · ·							· · · · · ·		: : :
				465			· · · · ·				· · · · ·			· · · · · ·		
				460			· · · · ·				· · · · ·			· · · · · ·		
				455	:									· · · · · ·		
				: :	:											
•		• • • • • • • •	• • • • • • • •	450	•	• • • • • • • •				• • • • • • • •						
	220	: (240	445) E ^ 7	- NUI		,	SHEE NO.	г т	OTAL IEETS
				· · · · ·		: . 	LINE							NO.		
						: '	'NB"		0A2	4033/	Z6073	40000			-	41

-																											
						· · · · · · · · · · · · · · · · · · ·	· · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	· · ·	· · ·	· · · ·	· · ·	· · · ·	· · ·	· · ·	· · · ·		· · · ·		• • • •		· · ·		· · ·	· · ·		· · ·	· · ·		· · · ·	· · ·	· · · ·	· · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		· · · · · · · · · · · · · · · · · · ·												· · · · · · · · · · · · · · · · · · ·													
		· · · · · · · · · · · · · · · · · · ·																									
· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: : : :	:::::	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			· · · · · ·		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	1 1 1 2 1 1 1 3 1 1 1 4 1 1 1
		· · ·												· · · · ·			· · · · · · · · · · · · · · · · · · ·										
		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· : · · · · :			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · ·					· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·												· · · · · ·		· · ·	· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·		
		· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· · ·	· · ·	· · · ·				· · ·		· · ·		· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · ·	· · · ·	· · · · ·	· · ·		· · ·	· · ·	1 1 1 1 1 1 1 1 1 1 1 1
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
														· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										
	480	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • •	· · · · · · · · · · · · · · · · · · ·				480		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	475	· · · · · · · · · · · · · · · · · · ·												· · · · ·			· · · · · · · · · · · · · · · · · · ·						475				
	470	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			··· /1					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						470				
	465						· · · · · · · · · · · · · · · · · · ·			\sim						\leq			0				465				
	460						RC							· · · · ·					ΉΕ	DOW/		: : :					
		: :	· · ·		· · · ·	· · ·						· · ·		· · ·	· · ·	· · ·						: : :		· · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·
: :	455	: :			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····									N I	· · · · · · · · · · · · · · · · · · ·			: : :			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
: :	: :	: :		: :					ز حالے ً ۔							· · · · · · · · · · · · · · · · · · ·		\sum					450				
· · · · · · · · · · · · · · · · · · ·	445 22	200	Di 180	160	140 1	120 10	00: 80	60	40	20	0	20	40	60	80	100	120	140	160	180	200 220	240	445		· · · · ·	· · · · · · · · · · · · · · · · · · ·	1 1 1 2 1 1 3 1 1 4 1 4 1
		· · · · · · · · · · · · · · · · · · ·								::				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										
	· · ·	· · · · · · · · · · · · · · · · · · ·									061+	JU		· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								· · · ·		· · · · · · · · · · · · · · · · · · ·
														· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										
	480	· · · · · · · · · · · · · · · · · · ·															· · · · · · · · · · · · · · · · · · ·						480				
							· · ·			· · · ·		· · ·	· · · ·	· ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·										· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	470	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		1							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	470	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• •
	465	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·										\geq	· · · · · · · · · · · · · · · · · · ·		O HE				465		· · · · · · · · · · · · · · · · · · ·		
	460	· · · · · · · · · · · · · · · · · · ·					RC	ow in the second				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	ROW		· · · · · · · · · · · · · · · · · · ·	460		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	455	· · · · · · · · · · · · · · · · · · ·												: 		_~_							455				
	450	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			l:			· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·	450				
20pm	445		100														<u> </u>				200 220		445				
02	: 22	200	180	160	1 I I	120 10	1 1	· · · ·			0	20	: : :	60		: :					200 220						
w/19/		· · ·				· · ·	· · ·			2	061+2	25		· · ·	· · ·	· · ·	· · ·			· · ·			· · ·		· · ·		· · · ·
hu, No		· · ·																									
N-8 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				•			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
)/34–X	475	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			475		· · · · · · · · · · · · · · · · · · ·		
XK-6(470	· · · · · · · · · · · · · · · · · · ·		· · ·		· · · · · · · · · · · · · · · · · · ·			1					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						470		· · · · · · · · · · · · · · · · · · ·		
<u>\c0126</u>	465	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·		⊙	· · · · · · · · · · · · · · · · · · ·			465		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
00/q08	460	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	RC	γw									<u>.</u>			ROW			460		· · · · · · · · · · · · · · · · · · ·		
065526	455						· · · · · · · · · · · · · · · · · · ·												· · · · · · · · · · · · · · · · · · ·				455		· · · · · · · · · · · · · · · · · · ·		
nhill_jc(· · · ·	· · ·		· · · · · · · · · · · · · · · · · · ·						·,		· · · · · · · · · · · · · · · · · · ·									450		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
\ch2n			· · · ·				· · ·							· · ·			·										
den001				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		• •
orkdir	440 22		0 180	160	140 1	120 10	00 80) 60	40	20	0	20	40	60	80	100	120	140	160	180	200 220	240	⁴⁴⁰	LINE	PROJECT N	NUMBER	SHEET TOTAL NO. SHEETS
											061+(· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				····	"NB"	0A24033/Z60		NO. SHEETS
		: :					: :	: : :	: :	: : Z				: :				: :	· · ·		· · ·	: : :	: :		UNZ 1000/ 200		

	450 445 ₂₂₀							· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		```,				
	460 455							ROW				+-				,		OHE		ROW	
	475 470 465															<u> </u>		O OHE			
	480																				
	220	200	180	160	140	120	100	80	60	40		20 2+00	40	60	80	100	120	140	160	180	200
	450 445 220					400	100														2000
	465 460 455							ROW						· · · · · · · · · · · · · · · · · · ·				OHE		ROW	
	475 470						· · · · · · · · · · · · · · · · · · ·			1						<u> </u>					
	480																				
											2062	2+25									
	445 220	200	180	160	140	120	100	80	60	 40) 20	40	60	80	100	120	140	 160	180	200
	455 450							KUW								,				κυνν	
	470 465 460							ROW										O OHE		RQW	
	480									1											
																	· · · · · · · · · · · · · · · · · · ·				
: :																					

1					,	"NB"		0A2	4033/	Z6073	40000				41
0	 220		240	445		LINE		PRC	JECT	NU	MBER	2	SHEE NO.	r ⊤(S⊦	OTAL IEETS
	 			450		· · · · ·				· · · ·			· · · · ·		
	 			455											
	 			460		· · · · · · · · · · · · · · · · · · ·				· · · ·			· · · · · ·		: : : : : : : :
	 			465	 					· · · · ·			· · · · · ·		
	 			470	 					· · · · · ·			· · · · · · ·		
	 			475	 								· · · · · · ·		
• •	 			480	 	· · · · ·				· · · ·			· · · · · ·		
:	 			· · · · · ·	 	· · · · · ·				· · · · · ·					:
•	 			· · · · · · ·		· · · · · · ·							· · · · · ·		
	 												· · · · · · ·		
0	 220		240	445		 							· · · · · · ·		
• :	 			450											· · · · · ·
• :	 	• • • • •		455		· · · · · ·	• • • • •						· · · · · ·		
•	 			460						· · · · ·					· · · · · ·
•	 	• • • • •		465		· · · · · · ·	• • • • •			· · · · ·					· · · · · ·
• •	 			470		· · · · · ·	• • • •						· · · · · ·		
:	 			475		· · · · · · ·				· · · · · ·			· · · · · · ·		
	 			480									· · · · · · ·		
	 				 • • • • • • • •				• • • • • • • •						
•					 • • • • • •				· · · · · ·				· · · · · · ·		
				· · · · · · · ·	· · · · · ·	· · · · · · · ·			• • • • • • • •				· · · · · · · ·		
					 •				•				· · · · · ·		
0	 220		240	445	 										
				450											
				: :											
	 			455											
	 			460											
	 			470											
	 			470											:
	 			475		· · · · · ·							· · · · · ·		· · ·
	 			480	 	· · · · ·				· · · ·			· · · · · ·		
	 				 	· · · · · · ·				•			· · · · · ·		
	 												· · · · · ·		
	 												· · · · · ·		
	 				 								· · · · · ·		:
	 				 								· · · · · · ·		:
	 				 								· · · · · · ·		
	 			· · · · · ·	 	· · · · · ·				· · · · ·			· · · · · · ·		:
	 	• • • • •					• • • • •						· · · · · ·		:
1				: :		:							: :		:

			•											· · ·	:	
• •	••••							••••				••••			· · · · ÷	
			: :													
			:											· · ·		
															· · · · : :	
			:												· · · · ÷	
			:			· · ·					· · ·			· · ·	:	
		• • • • • • • •			• • • • • • • •				• • • • • • • •	• • • • • • • •						
•															· · · · :	
														:		
				485										· · · · ·		
-			•												:	
		• • • • •	• • • • • • • •	480						• • • • • • • •						
•				475											· · · · :	
				470										:		
				465	:											
				:		· · ·					· · ·			· · ·	:	
		• • • • • •	• • • • • • • •	460	:				• • • • • • • •	• • • • • • • •				· · · · · ·		
			· · · · · ·	455											· · · · . :	
				450												
-	220	(240	445										· · ·	:	
			• • • • • • •													
•														· · · · · ·	· · · · :	
				485												
			:	480	:										:	
			•	:	:									· · ·	:	
•		• • • • •	• • • • •	475	• • • • •				••••	••••						
•				470											· · · · :	
				465												
				460												
			•	:	:									· · ·	÷	
			• • • • • • • •	455	• • • • • • • •					• • • • • • • •						
	• • • • •			450		· · · · ·					· · · · ·			· · · ·	· · · · :	
	220		- 0 4 0	445										· · · · ·	· · · · :	
	220		240	· · · · · ·										· · · ·	:	
				· · ·		· · ·					· · ·			· · ·	:	
•			:	· · · · · ·		· · · · · ·					· · · · · ·			· · · · · ·	· · · · :	
				480		· · · · ·					· · · · ·			· · · · ·	· · · · :	
				475											:]
						· · ·					· · ·			· · ·	:	
		· · · · · ·		470	:				· · · · · ·							
				465		· · · · · ·					· · · · · ·			· · · · ·	· · · · :	
				460										· · · · ·	· · · · :	
				455	:									· · · · ·	: :	
			•	: :	:									· · ·		
		• • • • • •	· · · · · ·	450					• • • • • • • •					· · · · · · ·		
•	220	: (240	445							- NU U		,	SHEET	ТО	TAL
				· · · · · ·		· ·	LINE				NU			SHEET NO.		TAL EETS
							'NB"		0A2	4033/	Z6073	40000			- 4	11

		· • • •			· · ·				 · · · ·						
			· · · · · · · ·						 						
									 	· · · ·					
		•			•				 •	· · · · · ·					
			· · · · · ·	485 480					 						
•				475	:	· · · · · ·		· · · · · ·	 •	· · · · · ·					
				470	:					· · · · ·					
				465 460					 · · · · · · ·	· · · · · ·					
				455	:				 •						
				450											
	220	 (240	445	· · · · · ·				 · · · · · ·						
		•			•				 •	· · · · · ·					
				485	:	· · · · · ·		· · · · · ·		· · · · · ·					
		· · · · · ·	· · · · · ·	480 475	:				 						
				470	:				 •	•					
				465		· · · · · ·		· · · · · ·		· · · · · · · · · · · · · · · · · · ·					
		· · · · · ·	• • • • • •	460 455	:				 • • • • • • •	• • • • • •					
				450					 · · · · · · · ·						
	220		240	445						· · · · · · · · · · · · · · · · · · ·					
• • •		· · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·				 · · · · · · ·						
				485											
				480					 	•					
				475					 						
÷	• • • •			470					 						
• • • • • • • • •		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	470 465	:				 · · · · · · ·						
				465 460											
				465											
	220		240	465 460 455 450			LINE		 	r nui	MRFF	2	SHEE NO.	T T	 DTAL EETS

÷													 		
•					 										
					 · · · · · ·					· · · · · ·			· · · · · ·		
÷			•										· · ·		
:		• • • • • • • •	• • • • • • • •	•	 			• • • • • • • •				• • • • • • • •	· · · · · · ·		
• • •				490	 										
• • •				485	 										
• • •				480	 										
				475											
				470											
÷				:	· · ·					· · ·			· · ·		
:		• • • • • • • •	• • • • • • • •	465	 			• • • • • • • •				• • • • • • • •	· · · · · · · ·		
• • •				460	 										
				455	 								· · · · ·		
				450	 · · · · · ·					· · · · · ·			· · · · · ·		
				445											
	220	(: 	240												
÷				· · ·	· · ·					· · ·			· · ·		
			• • • • • • • •	• • • • •	 							•••••			
				· · · · · ·	 								· · · · · ·		
• • •	• • •			485	 										
				480	 · · · · · ·					· · · · · ·			· · · · · ·		
				475	· · · · ·					· · · · ·			· · · · ·		
				470											
-				:											
		• • • • • • • •	• • • • • • • •	465				•••••				•••••			
• • •				460	 										
• • •				455	 										
· : .				450	 · · · · ·					· · · · ·			· · · · · ·		
				445	 · · · · · ·					· · · · · ·			· · · · ·		
	220		.∠40												
				· · ·											
			· · · · · ·		 								· · · · · · ·		
:			• • • • • • • •	• • • • •	 										
: : .				485	 · · · · · ·					· · · · · ·				· · · · · · · · · · · · · · · · · · ·	
• • •				480									· · · · ·		
				475	 										
				470	 										
				465									· · · ·	• • •	
÷				:											
:			• • • • •	460											
: : :				455	 · · · · · ·					· · · · · ·			· · · · · ·		
• • •				450	 								· · · · · ·	· · · · · ·	
	 220	: r	240	445			: 	:				:	SHEET	Т т с	
	- <i>-</i> 0		: ∠+U	•	 : . 	LINE				NU			SHEET NO.		DTAL EETS
					; ,	'NB"		0A2	4033/	Z6073	40000			- 4	41

:															
		· · ·		· · ·						· · ·					
		•		•	• • • • • •	• • • • • •					• • • • • •	• • • • • •			
		• • • • •		• • • • •	• • • • • • • •	• • • • • • • •					• • • • • • • •	• • • • • • • •			
		· · · · · ·		· · · · · ·				 							
•								 							
•		· · · · · · ·		490				 							
				485				 							
		· · · · · ·		480				 							
				475				 							
•		· · · · · ·		470				 		· · · · · ·					
		· · · · · ·		465	:					· · · · ·			· · · · · ·		
		•		460	:			 							
•				455	:										
				:	:										
				450											
•••	220	í. I	240	445	• • • • • • • •	• • • • • • • •				•	• • • • • • • •	• • • • • • • •			
•								 							
		· · · · · ·		· · · · · · ·				 					· · · · · · ·		
•				490				 							
•		· · · · · · ·		485				 		· · · · · ·					
				480				 							
				475				 							
				470				 							
		· · · · · ·		465				 		· · · · · ·			· · · · · ·		
				460				 							
				455											
		•		450									· · · · ·		
•				•	•										
	220	í :	240	445						· · ·					
		•		•				 							
• •				490				 			• • • • • • • •	• • • • • • • •			
		· · · · · ·		485	:			 							
		•		480				 		· · · · · ·					
		· · · · · ·		475				 							
		· · · · · ·		470				 							
				465				 							
				460				 							
•		· · · · · ·		455				 		· · · · ·					
•				450	:			 		· · · ·			· · · · ·		
					•										
	220	ί 	240	445			LINE	PRC	JECT	NU	MBEF	R	SHEET NO.	r to SH	DTAL EETS
		•		•		; ,	'NB"	0A24	4033/	Z6073	40000			-	41

÷														
•					 		 							
•					 		 							
					 · · · · · ·		 · · · · · ·		· · · · · ·			· · · · · ·		
					· · ·		· · ·		· · ·			· · ·		
		• • • • • • • •	• • • • • • • •											
:		••••	••••	490	 		 				• • • • • • • •	· · · · · · ·		
•				485	 		 							
• :				480	 		 						• • • • • •	
•				475	 		 							
•				470	 		 							
				465	 · · · · · ·		 · · · · · ·		· · · · · ·			· · · · ·		
		•	•	460										
				:	 		 							
:		• • • • • • • •	• • • • • • • •	455	 		 				• • • • • •			• • • •
•				450	 		 							
• :	220	ί Κ	240	445	 · · · · · ·		 · · · · · ·		· · · · · ·			· · · · · ·	•••••	
•					 		 							
. :				· · · · · ·	 · · · · · ·		 · · · · · ·		· · · · · ·			· · · · · ·		
				490										
				485			 					· · · · ·		
:				:	· · ·		· · ·		· · ·			· · ·		
		• • • • • • • •	• • • • • • • •	480			 				• • • • • • • •			
		• • • • • • • •	• • • • • • • •	475			 				• • • • • • • •			
:				470	 · · · · · ·		 · · · · · ·		· · · · · ·			· · · · · ·		
•				465	 		 							
•				460							: 	: :	•••••	
				455	 		 							
. :				450	· · · · ·		 · · · · ·		· · · · ·			· · · · ·		
												· · · · ·		
÷	220	i :	240	443 :	· · ·		· · ·		· · ·			· · ·		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • •	 		 				· · · · · · ·			
:		· · · · · ·	· · · · · ·		 		 					· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
•				490	 		 					· · · · ·	· · · · · · · · · · · · · · · · · · ·	
•				485	 		 					 		
		: 	: 	480	 		 					· · · · · ·		
				475								· · · · ·		
				470			 				:	: :		
				465			 					· · · ·		
				:	 		 							
		• • • • • • • • •	• • • • • • • • •	460	 		 						• • • • • •	
:				455	 · · · · · ·		 		· · · · · ·			· · · · · ·		
÷				450			 							
•	 220	 κ	240	445					- KIL 1		: ,	SHEET	: ТС	TAL
					 : . 	LINE			NU			SHEET NO.		DTAL EETS
:					:] '	'NB"	0A24	4033/	Z6073	40000			- 4	41

				480												
				480 475	:											
				470												
				465	:											
				460	:					•			•	· · · · ·		
				455	:									· · · · ·		
				450	:									· · · · ·		
	220		240	445										· · · · ·		
			210											· · · · ·		
				· · · ·												
			•	· · · · · ·	•					•			•			
		· · · · · ·		490	:	· · · · · ·		· · · · · ·	· · · · · ·		· · · · · ·	· · · · · ·			· · · · · · · · · · · · · · · · · · ·	
				485	:									· · · · ·		
				480	:											
		· · · · · · ·	• • • • • • • •	475		· · · · · ·		· · · · · ·	· · · · · ·	• • • • • • • •	· · · · · ·	· · · · · · ·	• • • • • • • •		· · · · · · · · · · · · · · · · · · ·	
				470 465												
		· · · · ·		460	:	· · · · ·		· · · · ·	· · · · ·		· · · · ·	· · · · ·				
				455										· · · · · ·		
		· · · · · ·		450	:	· · · · · ·		· · · · · ·						· · · · ·		
	220		240	445					· · · · ·			· · · · ·		· · · · ·		
			2-0		•					•			•	· · · · ·		
		· · · ·		· · · · ·		· · · ·		· · · ·	· · · ·		· · · ·	· · · ·				
•		· · · · ·		· · · · ·		· · · · ·		· · · · ·	· · · · ·		· · · · ·	· · · · ·		· · · · · ·		
		· · · · ·		490		· · · · ·		· · · · ·	· · · · ·		· · · · ·	· · · · ·		· · · · · ·		
		· · · · · ·		485	:	· · · · · ·		· · · · · ·	· · · · · ·		· · · · · ·	· · · · · ·		· · · · · ·		
· · · · · · · · · · · · · · · · · · ·		· · · · · ·		480	:	· · · · · ·		· · · · · ·	· · · · · ·		· · · · · ·	· · · · · ·				
			• • • • • • • •	475						• • • • • • • •			• • • • • •			
				470 465												
				460	:					· · · · · ·						
				400	:											
		· · · · ·		450	:	· · · · ·		· · · · ·	· · · · ·		· · · · ·	· · · · ·				
•	220		240	445		·			_				: 	SHEET		Δ1
	220	· · · ·	∠40	N		· ·	LINE	_			- NUI			SHEET NO.		
							'NB"		0A24	4033/	Z6073	40000			- 4	1

						•									
				· · · · · ·				 					· · · · · · ·		
								 					: 		
				495									· · · · · ·		
				:	:	•							· · ·		
				490	:										
				485				 							
		· · · · · ·		480	· · · · · ·		· · · · · ·	 		· · · · · ·			:		
				475				 							
				470				 					:		
				465		: 		 					· · · · · · ·		
				460	:								· · ·		
		· · ·		: .	:	•	· · ·			· · ·			· · ·		
		• • • • •	• • • • • • • •	455	:		• • • • •		• • • • • • • •	• • • • •	• • • • • • • •	• • • • •			
• •				450				 					· · · · · · · · ·		
	220	: (240	445				 							:
				· · · · · ·				 					:		
								 					· · · · · · ·		
				495				 					:		
				490	:	•							· · ·		
				:	:										
				485	:										
•				480				 					· · · · · · ·		
				475				 							
		· · · · ·		470			· · · · ·	 		· · · · ·					
				465				 					· · · · · · ·		
				460	:								· · · · · ·		
		· · ·		: :		•	· · ·			· · ·			· · ·		
				455											
		· · · · · ·	• • • • • • • •	450		• • • • • • • •	· · · · · ·		• • • • • • • •	· · · · · ·	• • • • • • • •	• • • • • • • •	· · · · · · · ·		
	220	(240	445		•		 					· · · · · · · ·		
								 					:		:
				•				 					: 		
				495				 					· · · · · ·		
				490				 							
				485									· · · · · · ·		
			:	: :	:	•			:		:	:			:
			• • • • • • • •	480	:				• • • • • • • •		• • • • • • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
•	• • • • •			475				 					· · · · · · · ·		
		· · · · · ·		470			· · · · · ·	 		· · · · · ·					
				465				 							
			:	460	:	:		 	:		:	:			:
				455	:			 					:		
		· · · · ·		450	:					· · · · ·			· · · · · · ·		
				:			· · ·			· · ·			::	_	
	220	(240	445			LINE	PRC	JECT	NU	MBEF	R	SHEE NO.	T SH	DTAL EETS
•						; ,	'NB"	0A2	4033/	Z6073	40000				41
		•		•		· 1			,					1	

•		• • • • • • • •			 			• • • • • • • •	• • • • • • • •			• • • • • • • •			
•					 							· · · · ·			
•				495	 										
				490	 										
				485	 										
				480	 										
•				475											
				470											
				465											
				460	 										
				455											
		: 		450											
	220		240	445									· · · · · ·		
•	220		240		 										
				495											
			· · · · · ·	490	· · · · · ·					· · · · · ·					
				485											
				480	· · · · ·					· · · · ·					
				475											
				470											
				465											
				460											
		• • • • • • • •		455				· · · · · ·	• • • • • • • •			• • • • • • • •			
		— —		450				• • • • • • • •	• • • • • • • •			• • • • • • • •			
		• • • • • • • •		445	 			• • • • • • • •	• • • • • • • •			• • • • • • • •			
	220	 (:	240	440	 			· · · · · ·	· · · · · ·						
•			· · · · · ·		 · · · · · ·					· · · · · ·					
			· · · · · ·	495	· · · · · ·					· · · · · ·					
•			· · · · · ·	490	· · · · · ·					· · · · · ·					
•			· · · · ·	485	 · · · · ·					· · · · ·			· · · · · ·		
•				480	 										
				475	 										
•			· · · · · ·	470	 · · · · · ·					· · · · · ·					
•			· · · · ·	465	 · · · · ·					· · · · ·					
•				460	 								· · · · · ·		
				455	 										
•			· · · · ·	450	 · · · · · ·					· · · · · ·					
•	220	 I	210	445									SHEET	г т <i>г</i>	
	220		∠40		 · ·	LINE	_			NU			SHEET NO.		DTAL EETS
						'NB"		0A2	4033/	Z6073	40000			_	41

																Ĩ
														· · · · · · ·		
														· · · · · ·		
				495												
		•	•	: .	:						•					
•		• • • • • • • •	• • • • • • • •	490							• • • • • •					
				485							· · · · · ·					
				480										:		
				475										· · · · · ·		
		•	•	:							•					
		• • • • • • • •	• • • • • • • •	470												
•				465										· · · · · · · · · · · · · · · · · · ·		
				460												
				455												
				450	:											
				: .	:											
•		• • • • • •	• • • • •	445	•			• • • • • • • •	• • • • • • • •	• • • • • • • •	•					
	220	: K	240	440		· · · · ·					· · · · · ·			: : : :		
				· · · · · ·		· · · · · ·					· · · · · ·			:		
				· · · · · ·							· · · · · ·					
				105												
•				495	:											
				490												
				485												
				480										· · · · · ·		
				475	:											
				:		· · ·										
		• • • • • • • •	• • • • • • • •	470	:			• • • • • • • •	• • • • • • • •	• • • • • • • •				· · · · · · · ·		
•				465												
				460										· · · · · ·		
				455												
				450												
			•	:	:											
	220	K K	240	445							•					
				· · · · · ·							· · · · · ·					
				· · · · ·		· · · · ·					· · · · · ·			· · · · · ·		
				495		· · · · · ·										
				490	:											
		•	•	: .	:											
•		· · · · · ·	· · · · · ·	485	:			• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • •					
				480		· · · · · ·					:			: :		
				475		· · · ·					· · · · · ·			· · · · · · · ·		
				470							· · · · · ·					
				465	:						· · · · · ·					
				: :	:											
		• • • • • • • •	• • • • • • • •	460												
				455												
				450												
			:		•										-	
	220		240	445			LINE		PRC	JECT	r nui	MBEF	R	SHEET NO.	SH)TAL EETS
						,	'NB"		0A2	4033/	Z6073	40000				41

•				· · · · · · · · ·				 						••••	
•				495				 							
				490				 							
				485				 							
				: :											
				480											
				475					• • • • • • • •	• • • • • • • •	• • • • • • • •		· · · · · · · ·		
•				470				 							
•				465				 							
•				460				 							
•				455				 							
				450				 							
				: :				 							
	220		240												
		· · ·	· · ·	· · ·								· · ·			
									· · · · · ·	· · · · · ·	· · · · · ·		· · · · · · · ·		
•				495					• • • • • •	· · · · · ·	• • • • • •				
•				490				 							
•				485				 					: : :		
•				480				 							
		· · · · · ·	· · · · · ·	475				 				· · · · · ·			
				470				 							
				465											
				460											
		· · ·	· · ·	: :	:							· · ·			
•				455					· · · · · ·	· · · · · ·	· · · · · ·				
•				450				 						••••	
•				445				 							
•	220	:; (:	240	440				 				· · · · ·	: :		
•				· · · · · · ·				 							
•				:				 	: 	: 	: 				
•		· · · · ·	· · · · ·	495				 				· · · · ·			
		· · · · ·	· · · · ·	490				 				· · · · ·			
		· · · · ·	· · · · ·	485				 				· · · · ·	· · · · · ·		
				: :											
		· · · · · ·	· · · · · ·	480					· · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
•				475				 	· · · · · ·	· · · · · ·	· · · · · ·				
•		· · · · · ·	· · · · · ·	470				 				· · · · · ·	· · · · · ·		
•				465				 							
				460				 							
				455				 							
				450				 							
				445				 							
	220	(240	440			LINE	PRC	JECT	NU	MBEF	2	SHEET NO.	r TC SH	DTAL EETS
		· · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		,	'NB"	0A24033/Z607340000							41

÷																
. : .	••••	· · · · · ·		· · · · · ·												
	• • • •													: 		
		· · · · · ·		· · · · · ·												
				405												
				495	:											
				490												
• • •	••••	· · · · · ·		485											••••	
				480												
		· · · · · ·		475										· · · · · ·		
				470												
		· · ·		:												
		•		465	:	• • • • • • • •		• • • • • • • •		• • • • • • • •	· · · · · ·					
	••••			460												
. : :				455												
				450												
		· · · · · ·		445			· · · · · ·									
• •	220	(240	ı . U				•		•		•				
• • •	• • • •	• • • • • •		• • • • • •		• • • • • •		• • • • • •		• • • • • •	• • • • • • • •	• • • • • •				
•				495												
	• • • •	· · · · · ·		490												
				485												
				480	:											
		· · ·					· · ·									
		•		475		• • • • • • • •		· · · · · ·		· · · · · ·	• • • • • • • •	· · · · · ·	· · · · · ·			
		· · · · · ·		470												
				465												
		· · · · · ·		460												
				455							: : :					
		•		450										· · · · ·		
	220	κ ·	240	445		· · · · · ·		• • • • • • • •		• • • • • • • •	· · · · · ·	• • • • • • • •				
		· · · · · ·		· · · · · ·												
		· · · · · ·		· · · · · ·										· · · · · ·		
				495												
		· · · · ·		490			· · · ·							· · · · · ·		
		· · ·		485												
				: :	:											
:		• • • • •		480	:	• • • • • • • •					• • • • • • • •		• • • • • •			
· : ·	• • • •	· · · · · ·		475			· · · · ·							· · · · · · · · · · · · · · · · · · ·		
		· · · · · ·		470	: 								: 			
				465												
				460	:											
:				: .	:											
:		• • • • •		455	:	• • • • • •		• • • • • •		• • • • • • • •	• • • • • • • •	• • • • • •				
		•		450			· · · · · ·							· · · · · ·		
 	220	: (240	445) IEAT	E NUT	MDEE		SHEET	T TC	DTAL EETS
	0					: . 	LINE				T NU			SHEET NO.		
÷						: '	'NB"		0A2	4033/	Z6073	40000			-	41

						•									
				· · · · · ·				 					· · · · · · ·		
								 					: 		
				495									· · · · · ·		
				:	:	•							· · ·		
				490	:										
				485				 							
		· · · · · ·		480	· · · · · ·		· · · · · ·	 		· · · · · ·			:		
				475				 							
				470				 					:		
				465		: 		 					· · · · · · ·		
				460	:								· · ·		
		· · ·		: .	:	•	· · ·			· · ·			· · ·		
			• • • • • • • •	455	:	• • • • • • • •			• • • • • • • •		• • • • • • • •	• • • • • • • •	· · · · · · · · ·		
				450	•			 					· · · · · · · ·		
	220	: (240	445				 							:
		· · · · ·		· · · · ·			· · · ·	 		· · · ·					
								 					· · · · · · ·		
				495									:		
				490	:	•							· · ·		
				:	:										
				485	:										
•				480				 					· · · · · · ·		
				475				 							
		· · · · ·		470			· · · · ·	 		· · · · ·					
				465				 					· · · · · · ·		
				460	:								· · · · · ·		
		· · ·		: :		•	· · ·			· · ·			· · ·		
				455											
		· · · · · ·	• • • • • • • •	450		• • • • • • • •	· · · · · ·		• • • • • • • •	· · · · · ·	• • • • • • • •	• • • • • • • •	· · · · · · · ·		
	220		240	445				 					· · · · · · · ·		
	• • • • •							 							:
		· · · ·		· · · · ·			· · · · ·	 		· · · ·			· · · · · ·		
				495				 							
		· · · · ·		490			· · · · ·	 		· · · · ·					
				485									· · · · · ·		
				: :	:										
			• • • • • • • •	480	:				• • • • • • • •		• • • • • • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
				475				 			• • • • • • • •				
		· · · · · ·		470			· · · · · ·	 		· · · · · ·					
				465				 					· · · · · ·		
			:	460	:	:		 	:		:	:			:
				455	:			 					:		
		· · · · ·		450	:					· · · · ·			· · · · · · ·		
				:			· · ·			· · ·			::	_	
	220	(240	445			LINE	PRC	JECT	NU	MBEF	R	SHEE NO.	T SH	DTAL EETS
•						; ,	'NB"	0A2	4033/	Z6073	40000				41
		•		•		· 1			,					1	

÷															
	••••			· · · · · ·				 					· · · · · · ·		
•	••••							 					: 		
				495									· · · · · ·		
		· · ·		:	:		· · ·			· · ·			· · ·		
				490	:	· · · · · ·							· · · · · · · · · · · · · · · · · · ·		
		· · · · · · ·	• • • • • • • •	485		••••	· · · · · · ·			· · · · · · ·	• • • • • • • •	• • • • • •	· · · · · · · ·		
•				480				 					· · · · · · ·		
•	••••			475				 							
• • •	••••	· · · · · ·		470			· · · · · ·	 					: 		
				465				 							
		· · · · · ·		460	:		· · · · · ·	 		· · · · · ·			· · · · · ·		
				455	:	•							· · · ·		
				: .	:										
••••	••••	· · · · · ·	• • • • • • • •	450		• • • • • • • • •	· · · · · ·				• • • • • • • •	• • • • • • • •	· · · · · · ·		
2	220	(240	445	• • •	· · · · · ·		 			• • • • • •	• • • • • •	· · · · · · · ·		
• • •	• • •			:				 					: :		
•	••••							 					· · · · · · ·		
	• • • •	· · · · · ·		495			· · · · · ·	 		· · · · · ·					
				490				 					· · · · · · ·		
				485	:										
÷		· · ·		: .	:		· · ·			· · ·			· · ·		
			• • • • • • • •	480		• • • • • • • •					• • • • • • • •	• • • • • •	· · · · · · · ·		
			• • • • • • • •	475		• • • • • • • •					• • • • • • • •		· · · · · · · ·		
•	••••	· · · · · ·		470		•	· · · · · ·	 		· · · · · ·			· · · · · ·		
•				465				 							
•	• • • •	· · · · ·		460			· · · · ·	 		· · · · ·			· · · · · · · ·		
				455				 					: 		
				450				 					· · · · · · ·		
													· · · · · ·		
2	220	(: : :	240	445			· · ·			· · ·			· · ·		
						• • • • • • • •							· · · · · · · ·		
	• • •			· · · · · ·		· · · · · ·		 					· · · · · · ·		
•	••••			495				 					· · · · · ·		
	• • •			490				 					· · · · · · ·		
	• • •	· · · · ·		485			· · · · ·	 		· · · · ·			· · · · · · ·		
	• • • •			480				 					· · · · · ·		
:			:	475	:			 			:	: : :			:
				470									· · · · ·		
				:										·	
		· · · · · ·		465	:	• • • • • • • • •	· · · · · ·						· · · · · · · · · · · · · · · · · · ·		
	••••			460	:		· · · · · ·	 		· · · · · ·			· · · · · · · ·		
: : :	• • •			455				 							:
	• • •	· · · · ·		450			· · · · ·	 		· · · · ·			· · · · · · ·		
	220		240	445		: : · 						: T		г т <i>г</i>	
∠	0	· · · · ·	∠40	n		: . 	LINE			NU			SHEE NO.	SH	DTAL EETS
							'NB"	0A24	4033/	Z6073	40000			_	41

				· · · · · ·				 					· · · · · · · · · · · · · · · · · · ·	
								 					:	 :
				· · · · · ·				 					: : : : : : : :	
				405										
				495	:			 						
				490				 						
				485				 						 · · · · · ·
				480				 					:	 :
				475				 					· · · · · · ·	
				470		•								
													· · ·	
			• • • • • • • •	465	:	• • • • • • • •		 • • • • • • • •	• • • • • • • •		• • • • • • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·
				460				 						
				455				 						
				450				 						 :
		· · · · ·		445				 		· · · · · ·				
	220	(: : : : : : : :	240	ı . U				•	•		•		· · · ·	
				• • • • • •		• • • • • • • •		 • • • • • •	• • • • • •		• • • • • •			
				495				 						 :
		 		490			 	 		 			· · · · · ·	 :
				485				 						
				480	:			 					· · · · · ·	
		· · ·				•	· · ·			· · ·			· · ·	
				475		• • • • • •		 						
•				470				 						
				465				 					· · · · · · · ·	
		· · · · · ·		460			· · · · · ·	 		· · · · · ·			· · · · · · ·	 :
				455				 						
				450				 						 :
		· · ·					· · ·			· · ·			: :	:
	220	(240	445	• • • • • • • •	• • • • • • • •		 • • • • • • • •	• • • • • • • •		• • • • • • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
						• • • • • • • •		 						
								 						 :
		· · · ·		495			· · · ·	 		· · · ·			· · · · · ·	
				490				 						
				485				 						
				: :	:							:	: :	:
			• • • • • • • •	480	:	· · · · · · · ·		 				• • • • • • • •		
•				475		· · · · · ·		 					· · · · · · · ·	
				470				 					:	 :
		· · · ·		465			· · · ·	 		· · · ·			· · · · · ·	
		· · · ·		460			· · · ·	 		· · · ·			:	 :
				455	:									 :
				: :	:									:
			• • • • • • • •	450		· · · · · · · ·		 				• • • • • • • •		
	220	(240	445			LINE	PRC	JECT	- NUI	MBEF	2	SHEE NO.	DTAL IEETS
						: . 	"NB"			Z6073			NU.	
			:		:	: [NВ	UAZ	4000/	200/3	40000			41

. : .	••••	· · · · · ·		· · · · · ·												
	• • • •													: 		
		· · · · · ·		· · · · · ·												
				405												
				495	:											
				490												
• • •	••••	· · · · · ·		485											••••	
		· · · · · ·		480												
				475										· · · · · ·		
				470												
		· · ·														
		•		465	:	• • • • • • • •		• • • • • • • •		• • • • • • • •	· · · · · ·					
	••••			460												
. : :				455												
				450												
		· · · · · ·		445			· · · · · ·									
• •	220	(240	ı . U				•		•		•				
• • •	• • • •	• • • • • •		• • • • • •		• • • • • •		• • • • • •		• • • • • •	• • • • • • • •	• • • • • •				
•				495												
	• • • •	· · · · · ·		490												
				485												
				480	:											
		· · ·					· · ·									
		•		475		• • • • • • • •		· · · · · ·			• • • • • • • •	· · · · · ·	· · · · · ·			
		· · · · · ·		470												
				465												
		· · · · · ·		460												
				455												
		•		450										· · · · ·		
	220	κ ·	240	445		· · · · · ·		· · · · · ·		• • • • • • • •	· · · · · ·	· · · · · ·				
		•		· · · · · ·												
		· · · · · ·		· · · · · ·										· · · · · ·		
				495												
		· · · · ·		490			· · · ·							· · · · · ·		
		· · ·		485												
				: :	:											
:		• • • • •		480	:	• • • • • • • •					• • • • • • • •		• • • • • •			
· : ·	• • • •	· · · · · ·		475			· · · · ·							· · · · · · · · · · · · · · · · · · ·		
		· · · · · ·		470	: 								: 			
				465												
				460	:											
:				: .	:											
:		•		455	:	• • • • • •		• • • • • •		• • • • • • • •	• • • • • •	• • • • • •				
		•		450			· · · · · ·							· · · · · ·		
 	220	: C	240	445) IEAT	E NUT	MDEE		SHEET	T TC	DTAL EETS
	0					: . 	LINE				T NU			SHEET NO.		
÷						: '	'NB"		0A2	4033/	Z6073	40000			-	41

÷																
	• • • •			· · · · · ·												
														: 		
				· · · · · ·												
				405												
				495	:											
•				490												
•	• • • •			485											••••	
	••••			480												
				475										· · · · · ·		
				470												
		• • • • • • • •	• • • • • • • •	465	:	• • • • • • • •		• • • • • • • •	· · · · · ·							
•				460												
•				455												
				450												
				445			· · · · · ·									
	220	(240	ı . U				•	•	•		•				
:		• • • • • • • •		• • • • • •		• • • • • • • •		• • • • • •	• • • • • •	• • • • • •	• • • • • • • •	• • • • • •				
•				495												
•	• • • •			490												
				485												
				480	:											
							· · ·									
		• • • • • • • •	· · · · · ·	475		• • • • • • • •		· · · · · ·	· · · · · ·		• • • • • • • •	· · · · · ·	· · · · · ·			
•				470												
•				465												
				460												
				455			· · · ·							· · · · · ·		
				450										· · · · ·		
:		•				•					•					
:	220	ι Κ	240	445		· · · · · ·		· · · · · ·	· · · · · ·	• • • • • • • •	· · · · · ·	· · · · · ·				
•				•												
•				· · · · · ·										· · · · · ·		
				495												
				490												
				485										· · · · ·		
				: :	:											
:		• • • • • • • •	• • • • • •	480	:	• • • • • • • •					• • • • • • • •		• • • • • •			
:				475												
				470										· · · · · ·		
				465												
				460	:											
				: .	:		· · ·									
		· · · · · · · ·	• • • • • • • •	455	:	· · · · · · · ·					· · · · · · · ·		• • • • • • • •			
				450		· · · · · ·		• • • • • • • •	• • • • • • • •	• • • • • • • •	· · · · · ·	• • • • • • • •				
	220	ί κ	240	445		: :					: f nu		,	SHEET NO.	г то)TAL EETS
. :				: 		: . 	LINE							NO.		
÷							'NB"		0A2	4033/	Z6073	40000			-	41

÷	:														
· : · · ·	: :	 	· · · · · ·										· · · · · · ·		· · · · · ·
	- : :	 											· · · · · ·		
:	. :	 	· · · · ·												
:	:					· · ·							· · ·		
	Ì														
:	:	 	490	:	••••	· · · · · · ·	• • • • • • • •	• • • • • • • •	• • • • • • • •	••••	••••	• • • • • • • •	· · · · · · · ·		
	•	 	485										· · · · · · ·		· · · · · ·
· · · · ·	• •	 	480												
• : • • •	. :	 	475												:
	÷	 	470												
	. :	 	465	:		· · · · · ·							· · · · · ·		
:			460		•					•	•		· · ·		
:			:	:											
		 	455	:	• • • • • • • •					• • • • • • • •	• • • • • • • •				
· · · · · ·		 	450		· · · · · ·		• • • • • •	• • • • • •	• • • • • •	· · · · · ·	· · · · · ·	• • • • • •	· · · · · · ·		
22	0	 240	445										· · · · · · ·		:
· : :		 											· · · · · ·		
		 	· · · · · ·			· · · · · ·							· · · · · ·		:
		 	490												
		 	485	:									· · · · · ·		
:	:		: .	:	•	· · ·				•	•		· · ·		
		 	480		• • • • • •					• • • • • •	• • • • • •				
• • • • •	:	 	475		• • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •						
· : · · ·	÷	 	470												:
• • • • •		 	465										· · · · · · ·		
	. :	 	460			· · · · · ·									:
 		 	455										· · · · · ·		
	. :	 	450										· · · · · ·		:
:					•					•	•		· · ·		
22	0	240	445												
		 	• • • • •		• • • • • • • • •	· · · · · ·				• • • • • • • • •	• • • • • • • • •				
		 	· · · · · ·		· · · · · ·					· · · · · ·	· · · · · ·		· · · · · · · ·		
	. :	 	495												
		 	490										· · · · · ·		
• • • • • •		 	485				: 	: 	: 						:
: :		 	480			· · · · ·							· · · · · ·		:
		 	475	:									· · · · · ·		:
		 	:			· · ·							· · ·		
		 	470	:	· · · · · ·		· · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · · · ·		
:		 	465	:	· · · · · ·		• • • • • • • •	• • • • • • • •	• • • • • • • •	· · · · · ·	· · · · · ·	• • • • • • • •			· · · · · ·
		 	460		· · · · · ·	· · · · · ·				· · · · · ·	· · · · · ·		· · · · · ·		: :
		 	455										 		:
		 	450			· · · ·									
		 	445		: 		: 					:		, ,	
22	U	 ∠40 			: . 	LINE		PRC	JECT	r nu	MBEF	2	SHEE NO.	SH	DTAL IEETS
						'NB"		0A2	4033/	Z6073	40000			_	41

		•													
		•		· · ·						· · ·					
		• • • • • • • •	· · · · · ·		· · · · · ·						· · · · · ·	· · · · · ·			
		• • • • • • • •	• • • • • • • •	• • • • •	• • • • • • • •	• • • • • • • •					• • • • • • • •	• • • • • • • •			
				· · · · · ·				 							
•								 							
•				490				 							
				485				 							
				480				 							
		: : :		475				 							
•				470				 		· · · · · ·					
				465	:					· · · · ·					
				460	:										
•				455	:										
				:	:			 							
		• • • • • •	• • • • • • • •	450		• • • • • •					• • • • • •	• • • • • • • •			
	220	 (240	445											
•								 							
				· · · · · · ·				 					· · · · · · ·		
•				490				 							
•				485				 							
				480				 							
				475				 							
				470				 							
				465				 		· · · · · ·			· · · · · ·		
				460				 							
				455											
				450									· · · · ·		
				•											
	220	K :	240	445											
		· · · · · ·													
		• • • • • • • • •		•				 							
• •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • •	490		• • • • • • • •		 			• • • • • • • •	• • • • • • • •			
				485	:			 							
		· · · · · ·		480				 		· · · · · ·					
				475				 							
				470				 							
				465				 							
				460				 							
•				455				 		· · · · ·					
•				450	:			 		· · · ·			· · · · ·		
					•										
	220	κ : 	240	445			LINE	PRC	JECT	NU	MBEF	R	SHEET NO.	r to Sh	DTAL EETS
				•		; ,	'NB"	0A24	4033/	Z6073	40000			-	41

															:
								 					:		
				· · · · ·				 					· · · · · · ·		
				•	• • • • • • • •							• • • • • • • •	· · · · · · · ·		
				· · · · · ·				 					· · · · · · · · · · · · · · · · · · ·		
				• • • • • •				 							
				490				 							
				485	:			 					· · · · · · · · ·		
				: :						· · ·			· · ·		
				480											
				475				 							
				470				 							
				465				 					: 		
				460				 					· · · · · ·		
				:						· · ·		•	· · ·		
		• • • • • • • •	• • • • • • • •	455		• • • • • • • •							· · · · · · · · · · · · · · · · · · ·		
				450				 							
	220	: (240	445				 					· · · · · · ·		:
								 		· · · · · ·			· · · · · · · ·		:
				· · · · · ·				 					· · · · · · ·		
				490									· · ·		
				: .	:										
•				485				 							
• •				480				 		· · · · · ·			· · · · · · ·		: :
				475				 		· · · · · ·					
				470				 							
				465	:										
				: .	:					· · ·			· · ·		:
		• • • • • • • •	• • • • • • • •	460		• • • • • • • •							· · · · · · · · · · · · · · · · · · ·		
				455				 							
				450				 							
			240	445				 							
	220		240							· · · ·			· · · · · ·		:
				•									· · · · ·		
				490								· · · · · ·			
				485				 							:
				480				 					: 		[
				475				 							:
				470				 							:
				:											
•		• • • • • • • •	• • • • • • • •	465		• • • • • • • •									
•				460				 		· · · · · ·					
				455				 					· · · · · · ·		
				450				 					· · · · · · ·		:
					•								: :		:
	220	(240	445			LINE	PRC	JECT	NU	MBEF	₹	SHEE NO.	T TO SH	DTAL IEETS
						,	'NB"	0A24	4033/	Z6073	40000				41
						1								1	

485 485 486 480 477 470 470 465 460 475 455 450 220 240 445 480 460 460 455 450 220 240 445 480 480 480 480 485 480 485 480 485 480 485 485 480 485 480 485 480 480 485 481 485 482 480 483 480 484 480 485 480 485 480 480 480 481 480 482 480 483 480 4840 480 485 480 480 480 480 480 480															:	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4	•								 						•••••	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4															<u>:</u>	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4									 							
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4														· · ·	÷	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4				• • • • • • • •					 • • • • • • • •	• • • • • • • •			• • • • • • • •			
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4	•								 						· · · · : :	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4	•								 						· · · · .	
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4									 							
480 475 470 465 460 455 450 220 240 445 490 485 480 490 485 480 475 470 465 480 470 465 460 470 465 460 470 465 460 450 220 240 480 470 485 480 470 485 480 470 465 460 470 465 460 450 450 450 450 450 450 450 450 450 4					485				 					· · · · · ·		
475 470 465 460 455 450 220 240 445 220 240 445 490 485 480 475 470 465 460 455 460 455 460 465 460 455 450 220 240 445 220 240 445 220 240 445 220 240 445 220 240 445 220 240 445 457 470 465 460 465 450 450 450 455 450 450 450 45				•			· · ·				· · ·				÷	
470 465 460 455 450 220 240 445 490 485 480 470 485 480 470 465 480 475 470 465 460 465 460 465 460 465 460 465 460 465 460 455 450 220 240 445 220 240 455 466 466 466 466 460 455 450 450 450 450 450 450 450 450 450 450				• • • • • • • •	:	:			 							
465 460 455 450 450 450 220 240 490 485 480 480 480 480 475 465 460 485 480 480 475 465 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 460 465 455 460 455 460 455 460 5 460 5 465 5 460 5	•				475				 						· · · · · ·	
460 455 450 450 220 240 490 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 460 465 460 465 455 450 220 240 445 485 460 485 460 485 460 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 485 480 485 480 485 480 485 480 485 4	•				470				 						· · · · .	
455 450 220 240 445 490 485 480 475 470 465 460 465 460 455 450 220 240 445 220 240 445 455 450 220 240 445 460 465 460 455 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 450					465				 						<u>:</u>	
455 450 220 240 445 490 485 480 475 470 465 460 465 460 455 450 220 240 445 220 240 445 455 450 220 240 445 460 465 460 455 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 5 450 450					460				 							
220 240 445 490 485 480 480 475 470 465 460 450 455 470 465 460 455 450 460 455 450 220 240 445 480 455 450 460 465 465 460 465 460 465 460 455 450 460 455 460 455 470 465 460 460 455 450 460 455 460 465 460 455 450 450 220 240				•	: :	:					· · ·		•	· · ·	:	
220 240 445 490 485 480 485 480 475 470 465 460 465 460 455 455 450 220 240 445 445 490 455 450 460 465 460 465 460 465 460 465 460 455 450 220 240 445 IINE PROJECT NUMBER SHEET TOTAL, SHEETS			· · · · · ·	· · · · · · · · · · · · · · · · · · ·	:				 · · · · · ·	· · · · · ·						
490 485 480 480 475 470 465 460 455 450 220 240 445 485 485 460 485 480 485 450 220 240 445 485 480 485 480 485 480 485 480 480 485 480 470 485 480 470 485 480 470 485 480 470 455 450 220 240 445 101 102 103 1045 450	•						· · · · · · ·		 		· · · · · · ·			· · · · · · ·		
490 485 480 480 475 470 465 460 455 450 220 240 445 485 485 460 485 480 485 450 220 240 445 485 480 485 480 485 480 485 480 480 485 480 470 485 480 470 485 480 470 485 480 470 455 450 220 240 445 101 102 103 1045 450	•	220	: (240	445				 						· · · · : :	
485 480 475 470 465 460 465 460 455 450 220 240 445 480 485 485 485 485 485 485 485 485	•								 					· · · · · ·	· · · · :	
485 480 475 470 465 460 465 460 455 450 220 240 445 480 485 485 485 485 485 485 485 485									 					· · · · · ·		
485 480 475 470 465 460 465 460 455 450 220 240 445 480 485 485 485 485 485 485 485 485					100										÷	
480 475 470 465 460 465 460 455 450 220 240 445 445 480 485 485 480 485 450 450 450 450 450 450 455 450 450					:											
475 470 465 460 455 450 455 450 220 240 445 490 485 480 480 470 485 480 480 470 485 480 470 470 470 465 460 455 460 455 460 455 450 220 240			• • • • • • • •	• • • • • • •	485	• • • • • • • •			 • • • • • • • •	• • • • • • • •			• • • • • • • •	· · · · · ·		
470 465 460 455 450 450 450 450 450 450 450 450 450 450 450 450 480 485 480 485 480 470 465 460 455 460 455 460 455 460 455 460 455 450 220 240	•				480		· · · · · ·		 					· · · · · · · · ·	· · · · : :	
465 460 450 450 450 450 220 240 445 450 490 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 470 465 465 460 455 450 220 240 445	•				475		· · · · · ·		 		· · · · · ·				· · · · :	
465 460 450 450 450 450 220 240 445 450 490 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 480 485 470 465 465 460 455 450 220 240 445					470				 							
460 455 450 450 220 240 445 490 485 480 480 480 480 480 480 485 480 480 480 485 480 480 480 480 480 480 480 480 480 480 480 470 465 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEET NO.					: :	:			 							
455 450 220 240 445 490 485 480 485 480 475 470 465 460 455 460 455 450 220 240 445 TOTAL SHEET NUMBER SHEET TOTAL SHEETS					:	:	· · ·				· · ·				:	
450 220 240 445 490 485 480 475 470 465 460 455 460 455 460 450 220 240 445 LINE PROJECT NUMBER SHEETS			• • • • • • • •	• • • • • • • •	:				 • • • • • • • •	• • • • • • • •						
220 240 445 490 485 485 480 480 475 470 465 460 455 460 455 450 5 450 5 450 5 220 240 445 1 PROJECT NUMBER SHEET NO.	•				455				 							
220 240 490 485 480 480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEET SHEETS	•				450				 						· · · · .	
490 485 480 480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEET SHEETS		220			445				 							
485 480 480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEETS		220		240			· · · · ·		 		· · · · ·			· · · · · ·		
485 480 480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEETS														· · · ·		
485 480 480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET NO. SHEETS									 							
480 475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS				• • • • • • • •	:	:			 				· · · · · ·	· · · · · ·	:	
475 470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS	•				485				 					· · · · ·	· · · · :	
470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS	•				480				 					· · · · ·	· · · · :	
470 465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS	•				475											
465 460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS									 						:	
460 455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS					:		· · ·				· · ·			· · ·	:	
455 450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL SHEETS			• • • • • • • •	• • • • • •			· · · · · ·		 		· · · · · ·		• • • • • • • •	· · · · · ·	:	
450 220 240 445 LINE PROJECT NUMBER SHEET TOTAL NO. SHEETS	•			· · · · · ·	460				 					· · · · · ·		
220 240 ⁴⁴⁵ LINE PROJECT NUMBER SHEET TOTAL SHEETS	•				455				 						· · · · · .	
220 240 ⁴⁴⁵ LINE PROJECT NUMBER SHEET TOTAL SHEETS	•				450				 						· · · · :	
LINE PROJECT NUMBER SHEET TOTAL SHEETS						:									:	
		220	(: 	240				LINE	PRC	JECT	NU	MBEF	2	SHEET NO.	TO SHE	TAL ETS
			: :			: :	,	'NB"	0A2	4033/	Z6073	40000			- 4	1

			185	 										
•			485 480	 										
			475	 								· · · · · · · ·		
		 · · · · · ·	470	 			· · · · ·							
		 · · · · · ·	465				· · · · · ·							:
		 · · · · · ·	460	 			· · · · · ·					· · · · · ·		
		 	455	 										
		 · · · · · ·	450	 			· · · · · ·					· · · · · · ·		
	220	 240	445	 			· · · · · · · · · · · · · · · · · · ·					· · · · · · · ·		
		 · · · · · ·		 			· · · · · ·					· · · · · ·		
		 		 								· · · · · · ·		
		 	485	 										
		 · · · · · ·	480	 			· · · · · ·					· · · · · ·		
		 	475	 										
		 	470	 			· · · · · ·					· · · · · · ·		
		 · · · · · ·	465	 			· · · · · ·					· · · · · · ·		
		 · · · · · ·	460	 			· · · · · ·					· · · · · · ·		
		 	455	 										
		 	450	 								· · · · · ·		
	220	 240	445		LINE		PRC	JECT	NU	MBER	2	SHEE NO.	T TO	: DTAL IEETS
1		 	· · · · · ·		'NB"	_			Z6073			NO.		eets 41
• •														

			: :	:	:	:	:		: :	: [
	475				· · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	470	· · · · · · · · · · · · · · · · · · ·				:				
	465	: 				: 				
	460	: :			:					
		1			÷	•				
· · · · · · · · · · · · · · · · · · ·	455	: :				• • • • •				
· · · · · · · · · · · · · · · · · · ·	450	1		•••••	•••••••••••••••••••••••••••••••••••••••					
220	240 ⁴⁴⁵				· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·							· · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	: 	· · · · · · · · · · · · · · · · · · ·								
	485									
	: :	: :			÷				· · ·	
· · · · · · · · · · · · · · · · · · ·	480	: :				• • • • • •				
	475					•				
· · · · · · · · · · · · · · · · · · ·	470				· · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	465	· · · · · · · · · · · · · · · · · · ·								
	460	1				•			· · · · ·	
· · · · · · · · · · · · · · · · · · ·	455	: :							· · · · ·	
		1								
· · · · · · · · · · · · · · · · · · ·	450					• • • • • • • •			· · · · · · · · ·	
220	240 ⁴⁴⁵					· · · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			••••••					
	: 	· · · · · · · · · · · · · · · · · · ·			·				· · · · · ·	
	485									
	480	1 1							· · · ·	
· · ·	: :	1 1			÷				· · ·	
· · · · · · · · · · · · · · · · · · ·	475	1				•			· · · · · · · ·	
	470				••••••••					
· · · · · · · · · · · · · · · · · · ·	465				· · · · · · · · · · · · · · · · · · ·				· · · · · ·	· · · · · · · · · · · · · · · · · · ·
	460	· · · · · · · · · · · · · · · · · · ·			••••				· · · · · ·	
	455					:				
· · · · · · · · · · · · · · · · · · ·	450	1 1								
· · ·		: :							· · · ·	
220	240 445									
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				•				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			••••••	· · · · · ·			· · · · · ·	
· · · · · · · · · · · · · · · · · · ·	485				•••	: : :				
	480					•			· · · · ·	
	475	· · · · · · · · · · · · · · · · · · ·							· · · · · ·	
· · ·	470	1							· · · · ·	
	465	1 1				•				
	: :	1								
· · · · · · · · · · · · · · · · · · ·	460	1 1								
· · · · · · · · · · · · · · · · · · ·	455	· · · · · · · · · · · · · · · · · · ·		••••		•			· · · · ·	
· · · · · · · · · · · · · · · · · · ·	450								· · · · ·	
220	240 ⁴⁴⁵		:	:	:	:		: 	SHEET	
220	270		LINE	_	ROJEC				SHEET NO.	TOTAL SHEETS
· · ·	· · ·		"NB"	(A24033/	′Z6073	40000			- 41

													1 I			ı ı .	ı ı .											
			· · · · · · · · · · · · · · · · · · ·													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
																					· · · · · · · · · · · · · · · · · · ·							
		· · · · · · · · · · · · · · · · · · ·														· · · · · ·	· · · · · ·				· · · · · · · · · · · · · · · · · · ·							
					· · · · · · · · · · · · · · · · · · ·							· · ·	· · ·			· · ·	· · ·											
					· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·	475	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	475	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	470									· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·		470					
	465			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·							\geq		OHE				465			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	460			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	ROW										\mathbf{i}			ROW		460					
	455	· · · · · · · · · · · · · · · · · · ·																					455					
	450																				· · · · I · · · ·		450					· · · · · · · · · · · · · · · · · · ·
	445 220																100		<u> </u>				D 240 ⁴⁴⁵					· · · · · ·
	220	200	180	160	140	120	100	80	60	40	20	0	20	40	60	80	100	120 1	40	160	180	200 220	240			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	480		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · ·			20	80+0	0					· · · ·	· · · · ·			· · · · · · · · · · · · · · · · · · ·	180			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	+00																						400					
	4/3			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · /1						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		475			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	470	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							<u> </u>		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	470	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	465			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·									OHE		· · · · · · · · · · · · · · · · · · ·		465					
	460							ROW					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				ROW	· · · · · · · · · · · · · · · · · · ·	460			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	455			· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·			<u>_</u>						455					
	450									[· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>				450					
	445 ₂₂₀	200	180	160	140	120	100	80	60	40	20		20	10	60	80	100	120 1	40	160	190	200 220	240 445					· · · · · · · · · · · · · · · · · · ·
	220	200	100	160	140	120	100	00	00	40	20		20	40	00	00	100	120 1	40	100	100	200 220	240					· · · · · ·
	480										20	79+7	75			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	480					· · · · · · · · · · · · · · · · · · ·
	175			· · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	· · ·								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	175			· · · · · ·		· · · · ·
· · ·	470		· · ·	· · ·		· · ·	· · ·	· · ·	· · ·		· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		· · · ·	· · · ·	· · ·			· · ·	· · · · · · · · · · · · · · · · · · ·	470			· · · ·	· · ·	· · · ·
	470		· · · · · · · · · · · · · · · · · · ·														\leq				· · · · · · · · · · · · · · · · · · ·		470			· · · · · · · · · · · · · · · · · · ·		
	100												· · · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • •	\sim	\	OHE				465					· · · · · · · · · · · · · · · · · · ·
	460							ROW								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	\mathbf{X}			ROW		460					
	455	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·												~	\sim					455					· · · · · · · · · · · · · · · · · · ·
· · · · · ·	450		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		`~-÷÷	<u> </u>		: :÷-	· · · · · · · · · · · · · · · · · · ·	450			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	445 ₂₂₀	200	180	160	140	120	100	80	60	40	20	0	20	40	60	80	100	120 1	40	160	180	200 220	240 445					
											20	79+5	50								· · · · · · · · · · · · · · · · · · ·							
	480		· · · · · · · · · · · · · · · · · · ·																				480					
· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		475	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·
· · ·	470	· · ·	· · ·	· · ·	· · ·	· · ·		· · ·		1		· · ·				· · · ·	· · · · ·	· · ·			· · ·		470			· · · · ·	· · ·	
• •				· · ·													\geq		0		· · · · · · · · · · · · · · · · · · ·		1,0			· · · · · ·		
	100		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		\mathbf{i}	OHE		· · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	100	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					ROW					• • • • • • • • • • • • • • • • • • •					\mathbf{X}			ROW		460			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	455		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								 					\sim				· · · · · · · · · · · · · · · · · · ·	455					
· · · ·	450	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			1 						· · · · · · · · · · · · · · · · · · ·		`	<u> </u>		: 		450			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	445 220	: 200	180	160	140	120	100	80:	60	40	: 20:	0	20	40	60	80	100	120 1	40	160	180:	200 220	240 445		: :			SHEET TOTA
· · · · · · · · · · · · · · · · · · ·		200			: :	: :					^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Join												LINE	_	DJECT NUM		SHEET TOTA NO. SHEE
					: :				• •	· ·	20	79 + 2	<u>25 :</u>	· · · ·		· · · ·	· · · ·					1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	"NB"	0A24	4033/Z60734	40000 -	41

		240	475						 		· · · · ·
	- - - - - - -	240									
	-,	240				 	 		 		
220).).	240	•	•							
			455 450		· · · · · · ·				 		
			460		· · · ·				 		
			470 465		· · · ·	 	 		 		
			475						 		
		· • • • • • • •		· • • • • • •	· • • • • • • • •				 		
220) D	240	445	•		 	 		 		
· · · · · · ·			455 450	:	· · · · · ·				 		
· · ·			460	:	· · · ·	 	 	· · · · · ·	 		
			470 465		· • • • • • •				 		
			475	•	•	 	 	· · · · · ·	 		
		· · · · · ·		· • • • • • •	· • • • • • •				 		
220))	240	445						 		
		· · · · · · ·	455 450	:	· · · ·				 		
· · · · · · ·	· · · · · · · ·		460		• • • • • • • •				 		
		· · · · · ·	470 465		· • • • • • •				 		
			475	•	•			· · · · · ·	 		
	· · · · · · · · · · · · · · · · · · ·			· • • • • • •	· • • • • • •				 		
				•	•	 	 		 		
		· · · · · · · ·		•	•				 	· · · · · · · · · · · · · · · · · · ·	
1						 	 		 		

												· · ·		
					••••		 		• • • • • • • •	• • • • • • • •	••••			
 							 					· · · · · · ·		
 ••••							 							
 							 					: 		
 			475				 							
			470											
 				:										
 			465	:	• • • • • • • •		 	• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			460				 							
 			455				 							
 			450				 							
 220		240	445				 							
 		240					 					· · · · · ·		
 							 					· · · · · ·		
			475											
 			470	:	• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			465				 					· · · · · · ·		
 ••••			460				 							
 			455				 							
 			450				 							
 			445				 							
 220	(240					 							
	· · ·													
 			475		• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			470				 					· · · · · · ·		
 • • • •		• • • •	465				 					· · · · · · ·		
 			460				 					· · · · · ·		
 			455				 					· · · · · · · ·		
 			450				 					· · · · · ·		
 			445				 					· · · · · ·		
 220		240					 					· · · · · ·		
 					• • • • • •		 		• • • • • •	• • • • • •	• • • • • •			
 			475				 							
 			470				 							
 			465				 					· · · · · ·		:
• • • • •			460				 					· · · · · ·		
									:	:		· · ·		
 			455				 						• • • •	[
 				:	•		 		• • • • • • •	· · · · · · ·	· · · · · ·			
 			450				 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
 220		240				LINE	PRC	JECT	r nu	MBEF	2	SHEE NO.	T T(SH	DTAL EETS

												· · ·		
					••••		 		• • • • •	• • • • • • • •	• • • • •			
 							 					· · · · · · ·		
 ••••							 							
 							 					: 		
 			475				 							
			470											
 				:										
 			465	:	• • • • • • • •		 	• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			460				 							
 			455				 							
 			450				 							
 220		240	445				 							
 		240					 					· · · · · ·		
 							 					· · · · · ·		
			475											
 			470	:	• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			465				 					· · · · · · ·		
 ••••			460				 							
 			455				 							
 			450				 							
 			445				 							
 220	(240					 							
	· · ·													
 			475		• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			470				 					· · · · · · ·		
 • • • •		• • • •	465				 					· · · · · · ·		
 			460				 					· · · · · ·		
 			455				 					· · · · · · · ·		
 			450				 					· · · · · ·		
 			445				 					· · · · · ·		
 220		240					 					· · · · · ·		
												· · ·		
 					• • • • • •		 		• • • • • •	• • • • • •	• • • • • •			
 			475				 							
 			470				 							
 			465				 					· · · · · ·		:
• • • • •			460				 					· · · · · ·		
									:	:		· · ·		
 			455				 						• • • •	[
 				:	•		 		• • • • • • •	· · · · · · ·	· · · · · ·			
 			450				 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
 220		240				LINE	PRC	JECT	r nu	MBEF	2	SHEE NO.	T TC	DTAL EETS

												· · ·		
					••••		 		• • • • • •	• • • • • • • •	••••			
 							 					· · · · · · ·		
 ••••							 							
 							 					: 		
 			475				 							
			470											
 				:										
 			465	:	• • • • • • • •		 	• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •	· · · · · · ·		
 			460				 							
 			455				 							
 			450				 							
 220		240	445				 					:		
 		240					 					· · · · · ·		
 							 					· · · · · ·		
			475											
 			470	:	• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			465				 					· · · · · · ·		
 ••••			460				 							
 			455				 					· · · · · · ·		
 			450				 							
 			445				 							
 220	(240					 							
	· · ·													
 			475		• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			470				 					· · · · · · ·		
 • • • •		• • • •	465				 					· · · · · · ·		
 			460				 					· · · · · ·		
 			455				 					· · · · · · · ·		
 			450				 					· · · · · ·		
 			445				 					· · · · · ·		
 220		240					 					· · · · · ·		
												· · ·		
 					• • • • • •		 		• • • • • •	• • • • • •	• • • • • •			
 			475				 							
 			470				 							
 			465				 					· · · · · ·		:
• • • • •			460				 					· · · · · ·		
									:	:		· · ·		
 			455				 						• • • •	[
 				:	•		 		• • • • • • •	· · · · · · ·				
 			450				 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
 220		240				LINE	PRC	JECT	r nu	MBEF	2	SHEE NO.	T T(SH	DTAL EETS

	: 		475		 	 		 	 	
	:									
							 · · · · · · · · · · · · · · · · · · ·	 	 	
220):	240	450 445	•						
	· · · · ·		455			 		 		
	· · · · ·	· · · · · ·	465 460		 	 		 		
		· · · ·	470						 	
	· · · · ·	· · · · · ·	475	· · · · · ·						
220):	240	445		 	 		 	 	
			450	•						
	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	460 455	:						
· · · · · · · ·		· · · ·	465	:	 	 		 		
	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	475 470							
	· · · · · · ·									
220):	240	445	· · · · · ·						
		· · · ·	450		 	 		 	 	
		· · · · · ·	460 455	:						
		· · · ·	465		 				 	
	· · ·		475 470			 		 		
	· · · ·	· · · · · ·		· · · · · ·						
	•				 	 		 	 	
-		· · · · ·		· · · ·	 	 		 	 	

220)	240	470 465 460 455 450 445 475 475								· · · · · · · · · · · · · · · · · · ·
220)	240	465 460 455 450 445								· · · · · · · · · · · · · · · · · · ·
220).	240	465 460 455 450						 		· · · · · · · · · · · · · · · · · · ·
			465 460 455 450						 		
· : · · · · ·	· · · · · · · · · · · · · · · · · · ·		465 460								
		· · · · · · · · · · · · · · · · · · ·	465	 · · · · · · ·			· · · · · · ·		 		
	•		470	 	 				 	 	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	475 470	• • • • • • • •	· · · · · · · ·	· · · · · · ·	• • • • • • • •		 	 	
		· · · · · · · · · · · · · · · · · · ·							 	 	
220)	240	445	 · · · · · ·			· · · · · ·		 		
		· · · · · · · · · · · · · · · · · · ·	450	•	· · · · · ·	•	•	•	 		
		· · · · · ·	460 455	· · · · · ·			· · · · · ·		 		
		· · · · · · · · · · · · · · · · · · ·	465		· · · · · ·	· · · · · ·		· · · · · ·	 		
· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	475 470	· · · · ·			· · · · ·		 		
		· · · ·							 	 	
220)	240	445	 · · · · ·			· · · · · · ·		 		
	· · · · · · · ·	· · · · ·	450						 		
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	460 455	· · · · ·			· · · · · · ·		 		
		· · · · · · · ·	465	• • • • • • • •			• • • • • • • •		 		
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · ·	475 470	· · · · ·			· · · · ·		 		
		· · · · · · · · · · · · · · · · · · ·							 	 	
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 · · · · · ·			· · · · · ·		 		
	· · · · · · · ·	· · · · ·							 	 	
· · · · · · · · ·		· · · · · ·							 		

			· · ·	· · ·					· · ·			· · ·		
		••••			 		 							
	••••				 		 							
					 		 					· · · · · ·		
			· · · · · ·	· · · · · ·	 		 		· · · · · ·					
				475	 		 					· · · · · ·		
				470								· · ·		
				:										
		• • • • • • • •	· · · · · ·	465	 • • • • • • • •		 • • • • • • • •		· · · · · ·	• • • • • • • •	• • • • • • • •	· · · · · · · ·		
•				460	 		 							
•				455	 		 							
				450	 		 					· · · · · ·		
	220	: r	240	445	 		 		· · · · · ·					
			240		 		 					· · · · · · ·		
		•		475							•			
		· · · · · ·		470	 • • • • • • • •		 • • • • • • • •		· · · · · ·	• • • • • • • •	• • • • • • • •			
•				465										
	• • • •			460	 		 							
				455	 		 					· · · · · ·		
				450	 		 					· · · · · ·		
			040	445	 		 							
	220	N 	240		 		 		· · · ·			· · · · ·		
			· · ·	475					· · ·			· · ·		
		· · · · · ·		475										
•		• • • • • • • •		470			 							
				465	 		 							
			· · · · · ·	460	 		 		· · · · · ·					
			· · · · ·	455	 		 		· · · · ·			· · · · · ·		
				450	 		 							
	200		040	445	 		 					· · · · · ·		
	220		∠40	· · · · · ·	 		 		· · · · ·					
					 		 					· · · · · ·		
				475	:		:			:	:			
		· · · · · ·		475	 • • • • • • • •		 • • • • • • • •			· · · · · ·	· · · · · ·			
		• • • • • • • •		470	 		 • • • • • •							
			· · · · · ·	465	 		 		· · · · · ·					
				460	 		 					 		
			· · · ·	455	 		 		· · · ·			· · · · ·		
				450	 		 					 		
	0.00		C / -	445										
	220	N : :	240		 : . 	LINE	PRC	JECT	NU	MBEF	R	SHEE NO.	I TO SH	DTAL EETS
			· · ·		,	'NB"	0A2	4033/	Z6073	40000			_	41

												· · ·		
					••••		 		• • • • • •	••••	••••			
 							 					· · · · · · ·		
 ••••							 							
 							 					: 		
 			475				 							
			470											
 				:										
 			465	:	• • • • • • • •		 	• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			460				 							
 			455				 							
 			450				 							
 220		240	445				 							
 		240					 					· · · · · ·		
 							 					· · · · · ·		
			475											
 			470	:	• • • • • • • •		 		• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			465				 					· · · · · · ·		
 ••••			460				 							
 			455				 					· · · · · · ·		
 			450				 							
 			445				 							
 220	(240					 							
	· · ·													
 			475		• • • • • • • •		 	• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • •			
 			470				 					· · · · · · ·		
 • • • •		• • • •	465				 					· · · · · · ·		
 			460				 					· · · · · ·		
 			455				 					· · · · · · · ·		
 			450				 					· · · · · ·		
 			445				 					· · · · · ·		
 220		240					 					· · · · · ·		
 					• • • • • •		 		• • • • • •	• • • • • •	• • • • • •			
 			475				 							
 			470				 							
 			465				 					· · · · · ·		:
• • • • •			460				 					· · · · · ·		
									:	:		· · ·		
 			455				 						• • • •	[
 				:	•		 		• • • • • • •	· · · · · · ·	· · · · · ·			
 			450				 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
 220		240				LINE	PRC	JECT	r nu	MBEF	2	SHEE NO.	T T(SH	DTAL EETS

	· · ·	· · ·	•		· · · ·	· · ·	· ·	· · ·	· ·		· · · ·	• •	:	· · · · ·	· · ·	· · ·	· ·	· · ·	· · ·	· · ·	· · ·	· · · ·			· · · · ·	· · ·	
												· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·														
												· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·									
																			· · · · · · · · · · · · · · · · · · ·								
																			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·				· · · ·							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · ·	
												· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·						·
						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·								
												· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
						· · · · · · · · · · · · · · · · · · ·																					
	· · · · · · · · · · · · · · · · · · ·																		· · · · · · · · · · · · · · · · · · ·								
																			· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·									
												· · · · · · · · · · · · · · · · · · ·															
						· · · · · · · · · · · · · · · · · · ·																		· · · · · · · · · · · · · · · · · · ·			
																			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· : :
												· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·								
												· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·								
																				· · · · · · · · · · · · · · · · · · ·							
					· · · · · · · · · · · · · · · · · · ·														· · · · · · · · · · · · · · · · · · ·								;
						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·															
																			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			
												· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·								
					· · · · · · · · · · · · · · · · · · ·														· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·····/
475	5																		· · · · · · · · · · · · · · · · · · ·			475					
470			-																				· · ·				
46	5																	О ЭНЕ				465					
460	0							ROW											ROW			460					
45	5																					455					
450					· · · · · · · · · · · · · · · · · · ·							· · · · ·	~		<u>_</u>		<u> </u>					100					
and the second se		200		1 1 1	: : :	120	100	80	60	40	20 0	20	40	60	80 100	120	140	160	180	200		240 445	LINI	E PRO	DJECT NUMBER	SHEET NO.	TOTAL SHEETS
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			2088-	+25					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		NB	3" 0A2	4033/Z607340000		41